Gary Gauba: CenturyLink, WISeKey Forge Internet of Things Security Collaboration

CenturyLink and WISeKey have agreed to explore strategies for the companies to jointly develop and market cybersecurity services in the Internet of Things market.

Spotlight

SUSS MicroTec

SUSS MicroTec is a leading supplier of equipment and process solutions for microstructuring in the semiconductor industry and related markets...

OTHER ARTICLES
Enterprise Iot

Beyond 2022: The Future of IoT Device Management

Article | July 20, 2023

Understanding the Impact of IoT Device Management The Internet of Things (IoT) industry is growing exponentially, with the potential to become limitless. The current range of existing and potential Internet of Things devices is in itself quite enormous. This also gives businesses an opportunity to pay more attention to the newest technologies. In ascenario with rapidly increasing numbers of devices, manual management of devices becomes close to impossible, laced with human errors. Moreover, keeping an eye on hundreds of devices one by one to make sure they work the way they should is not an easy task to undertake. Businesses at the outset of IoT adoption are most often unaware of why they require a device management platform.This is precisely why a device management platform is so crucial.It can effectively connect toall of theconnected devices and get the required information from them in the right way. An effective device management platform can turn out to be the vital aspect that will define the success of any small or large IoT implementation project. Such a platform would ideally allow organizations to manage their internet-connected devices remotely. "If you think that the internet has changed your life, think again. The IoT is about to change it all over again!" — Brendan O'Brien, Chief Architect & Co-Founder, Aria Systems. Why Do Organizations Need an IoT Device Management Platform? An effective IoT device management platform offers simplified provisioning, centralized management, and real-time insights into all existing devices and integrations to help organizations stay on top of their deployment. Device management platforms help you keep a check on the growing number of devices while keeping errors at bay, with your growing number of connected devices. It would ensure that you have a clear dashboard and an alerting system as an effective supporting system. In addition, getting involved with IoT device management platforms can also help you in a number of other ways. It acceleratestime-to-market and helps reduce costs The management platform enables secure device on and offboarding It also streamlines network monitoring and troubleshooting IoT simplifies deployment and management of downstream applications It mitigates security risks Evaluating the Future of IoT Device Management It is predicted that the world will have more than 100 billion IoT-connected devices by 2050. The future potential of the IoT is limitless, and the potential is not about enabling billions of devices together but leveraging the enormous volumes of actionable data thatcan automate diverse business processes. Critical Aspects of the IoT's Future The critical aspects of IoT predictionsare fast impacting several categories all across the globe, ranging from consumer to industrial. IoT Companies and a Circular Economy IoT firms are assisting in the development of a future with less waste, more energy efficiency, and increased personal autonomy. A connected device system, on the other hand, must be feedback-rich and responsive, and activities must be linked via data in order to be sustainable. Ways to achieve a responsive and actionable system include: Extending the use cycle with predictive maintenance. Increasing utilization and reducing unplanned downtime. Looping the asset for reuse, remanufacture, or recycle. Common Billing and Revenue Challenges We are currently moving toward a future where everything from cars to household machines and home security will be sold by manufacturers as subscription services. This will result in organizations selling IoT subscriptions looking for new ways to managebilling and revenue for their business model. Service diversity Data monetization Complex stakeholder network Cost management Cohesive IoT Deployment Strategy for the C-suite With the future of IoTon its way to becoming the most disruptive innovation and compelling technology that will facilitate better services to customers, from a support perspective, being connected remotely with customers' devices offers considerable advantages to service organizations. However, this is also not a new concept; earlier, large organizations and data storage companies were remotely connected to their client systems using dedicated telecommunications links before the commercialization of the internet. Using the estimates of the exponential rise in connected devices, the IoT offers a wide array of opportunities to effectively improve the industry, such as: Consumer activity tracking includes in-store applications that assess traffic flow and purchase choices. Manufacturing, storage, distribution, and retail operations have been optimized to increase productivity and reduce waste. Energy, inventory, and fleet assets are all used more efficiently. Improved situational awareness, such as vehicle warning systems Enhanced decision-making, such as medical equipment that notifies doctorswhen a patient's health changes. Self-parking and self-driving automobiles are examples of autonomous systems. An interesting case study with Michelin showed that they were adding sensors to tires to better understand wear over time. This data is important for clients to know when to rotate or replace tires which saves them money and enhances safety. However, this also implies Michelin can move away from selling tires and instead lease them. Because sensor data will teach the corporation how to maintain the tires, Michelin now has a new economic incentive to have tires last as long as feasible. IoT device management plays a crucial role in effectively accumulating and processing data from all the widely distributed IoT sensors. Conclusion As more sectors discover the advantages linked machines can bring to their operations, IoT enterprises have a bright future ahead of them. Newer services are steadily being pushed out on top of IoT infrastructure in industries ranging from healthcare to retail, telecommunications, and even finance. Due to increasing capacity and AI, service providers will move deeper into IT and web-scale industries, enabling whole new income streams as IoT device management platforms adapt to address these obstacles. FAQ Why Is Device Management Crucial for the IoT? An IoT device management platform's features may help you save time and money and increase security while also providing the critical monitoring and management tools you need to keep your devices up-to-dateand optimized for your unique application requirements. What Impact Will the IoT Have on the Management or Administration Sectors? IoT technology allows for increased collaboration, but it will also free up your team's time from monotonous and isolating duties. For example, routine chores may be encoded into computers, freeing up time to concentrate on higher-order tasks. What Are the Basic Requirements for IoT Device Management? The four essential needs for IoT Device Management are as follows. Authentication and provisioning Configuration and Control. Diagnostics and monitoring Updating and maintaining software.

Read More
Security, IoT Security

How 5G Will Unlock Unseen Opportunities in Industrial IoT

Article | July 13, 2023

Manufacturing industry or the Industrial Internet of Things has been one of the driving verticals for development of 5G technologies. Wide 5G deployement for Industrial IoT has long been in the pipeline but we might expect it to be a reality very soon. The true success of 5G depends on the verticals as trends suggest that that Industrial IoT alone will triple the number of needed base stations globally. And many verticals will need efficient wireless connectivity to become successful. 5G has features that are specifically designed to address the needs of vertical sectors, such as network slicing and URLLC. The ultra-reliable low latency communications and massive machine type communications required by the IIoT will soon be realized. Table of Contents: How Will 5G Impact Industrial IoT? 5G Accelerations for IIoT Industrial 5G How Will 5G Benefit Industrial IoT? IoT is a B2B application and users just want to get actionable data from their sensors and not worry about whether it’s old data or unreliable data. I think 5G changes this dynamic significantly over the long term by standardizing and simplifying the experience and interactions, and possibly engaging more of the industry to help solve IoT’s problems but also improve the total experience. - Anshel Sag, analyst at Moor Insights & Strategy • Data-Transfer Speeds Any IoT is said to be commercially successful depending on how fast it can set up communications with other IoT devices, software based websites or applications, phones, and tablets. 5G promises exactly all of this with significant increase in transfer speeds. 5G is 10x faster than its LTE counterparts and allows IoT devices to communicate and share data faster than ever. All IoT devices will benefit from the faster speed of 5G with reduced lag and improved sending and receiving of data and notifications between connected devices. • Greater Network Reliability 5G networks also offer more reliable and stable connection which is extremely important for any IoT including devices like locks, security cameras and monitoring systems that depend on real-time updates. With reliable connectivity consumers will be the greater beneficiary. It is however, imperative for manufactures to trust and invest in 5G compatible devices to reap the benefits of high-speed connectivity, very low latency, and a greater coverage that will arrive with the next generation network. READ MORE:How Will the Emergence of 5G Affect Federated Learning? 5G Accelerations for IIoT • Diversity in Industrial IoT The opportunities that industrial IoT bring with is varied and its used cases span the spectrum from indoor to outdoor, less demanding to mission-critical, data rate from dozens of bps to gbps, device motion from fixed to mobility, and power source from button battery to high voltage. Predictive maintenance, smart metering, asset tracking, and fleet management are some of the commonly known opportunities for IIoT, which be extended further by 5G through continued diversity and expansion. • 5G Inspires Untapped Frontiers Industrial IoT application areas such as mobile robot control in production automation and autonomous vehicles in open pit mining require wide mobility, low latency and mission-critical reliability. They rely on wireless access at 50ms to 1ms latency and service reliability from 5 nines to 6 nines. Though 4G/LTE has attempted to address these areas of IIoT application it has failed due to unsatisfactory performance. With ultra-reliable and low latency connection, 5G will take industrial IoT to unconquered spaces. • Managing the Enterprise 5G Network Typically, enterprise IT is responding to the business demand from Operational Technology (OT) and mandates security, integration, visibility, control, and compatibility. In this scenario, 5G is not about “what,” but about “how”. IT needs to consider the right approach to bring 5G to the enterprise and decide whether to co-manage with the service provider (SP) or self-manage. The experience of IT in managing Industrial Ethernet and Wi-Fi may not hold when it comes to 5G. IT will likely require OT’s partnership to address complexity, security, integration, and other new challenges that 5G presents. Industrial 5G The potential for industrial 5G huge as it enables whole new business models. Industrial IoT has a core requirement of the ability to connect sensors, devices, software applications, production process, workers and consumers. The connectivity requires to be seamless vertical and horizontal integrations of all layers of automation pyramids that increases operational efficiency of the plant floor and the supply chain by optimal use of data, information and analytics. This can be improved by five key elements: • Improved Connectivity • Availability • Low Latency • Flexibility • Speed Industrial 5G will impact these areas of the manufacturing industry to guide the success of Industrial IoT. Industrial 5G will play a key role in helping industrial users achieve the goals of Industrial IoT. 5G offers wireless communications services with reduced latency, increased connection density, and improved flexibility compared to the current 4G generation. 5G technology has a theoretical downlink peak speed of 20 Gbps (gigabits per second), which is about 20 times faster than the current generation. The key is to start building IoT devices with broadly adopted operating systems, built-in security all the way down to the silicon, verifiable and updatable firmware, and mainstream application development tooling. - Anshel Sag, analyst at Moor Insights & Strategy The push and pull in achieving 5G success in IoT will be there until technology providers and end users work together to set up a consensus on standardization. The success will also depend on best-of-breed approach allowing the introduction of new technology over the lifecycle. Software and system integration will also be important attributes to a successful 5G deployment. READ MORE:How Will IoT Revolutionize Pharmaceutical Manufacturing?

Read More
Industrial IoT, IoT Security

Securing Real-world IoT Applications through Penetration Testing

Article | July 11, 2023

Enhancing IoT security: Unveiling the significance of penetration testing in securing real-world IoT applications, identifying vulnerabilities, and mitigating risks for the protection of IoT data. Contents 1. Introduction to IoT Application Security and Penetration Testing 1.1 Vulnerabilities of IoT application security 2. Fundamentals of IoT Penetration Testing 3. Considerations for IoT Penetration Testing 4. Methodologies and Approaches for IoT Penetration Testing 5. Takeaway 1. Introduction to IoT Application Security and Penetration Testing Securing real-world IoT applications is paramount as the Internet of Things (IoT) permeates various aspects of any individuals lives. Penetration testing serves as a vital tool in identifying vulnerabilities and assessing the resilience of IoT systems against cyber threats. In this article, delve into the significance of penetration testing in securing IoT applications, exploring its role in identifying weaknesses, mitigating risks, and ensuring the integrity and confidentiality of IoT data. 1.1 Vulnerabilities of IoT application security Expanded Attack Surface: The proliferation of IoT devices has dramatically expanded the attack surface, increasing the potential for security breach enterprise networks. With billions of interconnected devices, each presenting a potential vulnerability, the risk of unauthorized access, data breaches, and other security incidents is significantly heightened. Risks: IoT devices often possess limited computational resources, making them susceptible to software and firmware vulnerabilities. Their resource-constrained nature can limit the implementation of robust security measures, leaving them exposed to potential attacks. Furthermore, a significant concern is the prevalence of default or weak credentials on these devices. Diverse Threat Landscape: The threat landscape surrounding IoT devices is extensive and ever-evolving. It encompasses various attack vectors, including malware, botnets, DDoS attacks, physical tampering, and data privacy breaches. One notable example is the Mirai botnet, which compromised a vast number of IoT devices to launch large-scale DDoS attacks, leading to significant disruptions in internet services. In addition, IoT devices can serve as entry points for infiltrating larger networks and systems, allowing attackers to pivot and gain control over critical infrastructure. Botnets: IoT devices can be infected with malware and become part of a botnet, which can be used for various malicious activities. Botnets are often utilized to launch distributed denial-of-service (DDoS) attacks, where a network of compromised devices overwhelms a target system with traffic, causing it to become inaccessible. Ransomware: IoT devices are also vulnerable to ransomware attacks. Ransomware is malicious software that encrypts the data on a device and demands a ransom payment in exchange for the decryption key. Data Breaches: IoT devices can be targeted to steal sensitive data, including personal identifiable information (PII) or financial data. Due to inadequate security measures, such as weak authentication or unencrypted data transmissions, attackers can exploit IoT devices as entry points to gain unauthorized access to networks and systems. 2. Fundamentals of IoT Penetration Testing IoT penetration testing, also known as ethical hacking or security assessment, is a critical process for testing and identifying vulnerabilities and assessing the security posture of IoT devices, networks, and applications. It involves simulating real-world attacks to uncover weaknesses and provide insights for remediation. IoT penetration testing involves identifying vulnerabilities, conducting targeted attacks, and evaluating the effectiveness of security controls in IoT systems. IoT pen-testing aims to proactively identify and address potential weaknesses that malicious actors could exploit. The methodology of IoT pen-testing typically follows a structured approach. It begins with attack surface mapping, which involves identifying all potential entry and exit points that an attacker could leverage within the IoT solution. This step is crucial for understanding the system's architecture and potential vulnerabilities. Pentesters spend considerable time gathering information, studying device documentation, analyzing communication protocols, and assessing the device's hardware and software components. Once the attack surface is mapped, the following steps involve vulnerability identification and exploitation. This includes conducting security tests, exploiting vulnerabilities, and evaluating the system's resilience to attacks. The penetration testers simulate real-world attack scenarios to assess the device's ability to withstand threats. After exploitation, post-exploitation activities are performed to determine the extent of the compromise and evaluate the potential impact on the device and the overall IoT ecosystem. Finally, a detailed technical report summarizes the findings, vulnerabilities, and recommendations for improving the device's security. 3. Considerations for IoT Penetration Testing Fuzzing and Protocol Reverse Engineering: Employ advanced techniques like fuzzing to identify vulnerabilities in communication protocols used by IoT devices. Fuzzing involves sending malformed or unexpected data to inputs and analyzing the system's response to uncover potential weaknesses. Radio Frequency (RF) Analysis: Perform RF analysis to identify weaknesses in wireless communication between IoT devices. This includes analyzing RF signals, monitoring wireless communication protocols, and identifying potential vulnerabilities such as replay attacks or unauthorized signal interception. Red Team Exercises: Conduct red team exercises to simulate real-world attack scenarios and evaluate the organization's detection and response capabilities. Red team exercises go beyond traditional penetration testing by emulating the actions and techniques of skilled attackers. This helps uncover any weaknesses in incident response, detection, and mitigation processes related to IoT security incidents. Embedded System Analysis: Gain expertise in analyzing and reverse engineering embedded systems commonly found in IoT devices. This includes understanding microcontrollers, debugging interfaces, firmware extraction techniques, and analyzing the device's hardware architecture. Embedded system analysis helps identify low-level vulnerabilities and potential attack vectors. Zero-Day Vulnerability Research: Engage in zero-day vulnerability research to identify previously unknown vulnerabilities in IoT devices and associated software. This requires advanced skills in vulnerability discovery, exploit development, and the ability to responsibly disclose vulnerabilities to vendors. 4. Methodologies and Approaches for IoT Penetration Testing Mobile, Web and Cloud Application Testing Mobile, web, and cloud application testing is integral to IoT penetration testing, focusing on assessing the security of applications that interact with IoT devices. This methodology involves various steps to evaluate the security of these applications across different platforms. For mobile applications, the methodology includes reviewing the binary code, conducting reverse engineering to understand the inner workings, and analyzing the file system structure. Sensitive information such as keys and certificates embedded within the mobile app are scrutinized for secure storage and handling. The assessment extends to examining the application's resistance to unauthorized modifications. In web applications, the testing covers common vulnerabilities like cross-site scripting (XSS), insecure direct object references (IDOR), and injection attacks. Application reversing techniques are employed to gain insights into the application's logic and potential vulnerabilities. Additionally, hardcoded API keys are identified and assessed for their security implications. Firmware Penetration Testing Firmware penetration testing is a crucial aspect of IoT security assessments, aiming to identify vulnerabilities within the firmware running on IoT devices. The methodology encompasses multiple steps to uncover weaknesses. The process begins with binary analysis, dissecting the firmware to understand its structure, functionality, and potential vulnerabilities. Reverse engineering techniques are applied to gain deeper insights into the firmware's inner workings, exposing potential weaknesses like hardcoded credentials or hidden functionality. The analysis extends to examining different file systems used in the firmware and evaluating their configurations and permissions. Sensitive keys, certificates, and cryptographic material embedded within the firmware are scrutinized for secure generation, storage, and utilization. Additionally, the resistance of the firmware to unauthorized modification is assessed, including integrity checks, secure boot mechanisms, and firmware update processes. IoT Device Hardware Pentest IoT device hardware penetration testing involves a systematic methodology to assess the security of IoT devices at the hardware level. This comprehensive approach aims to identify vulnerabilities and weaknesses that attackers could exploit. The methodology includes analyzing internal communication protocols like UART, I2C, and SPI to understand potential attack vectors. Open ports are examined to evaluate the security controls and risks associated with communication interfaces. The JTAG debugging interface is explored to gain low-level access and assess the device's resistance to unauthorized access. Extracting firmware from EEPROM or FLASH memory allows testers to analyze the code, configurations, and security controls. Physical tampering attempts are made to evaluate the effectiveness of the device's physical security measures. 5. Takeaway Penetration testing is crucial in securing real-world IoT applications, enabling organizations to identify vulnerabilities and mitigate risks effectively. By conducting comprehensive and regular penetration tests, organizations can proactively identify and address security weaknesses, ensuring the integrity and confidentiality of IoT data. With the ever-growing threat landscape and increasing reliance on IoT technologies, penetration testing has become indispensable to safeguard IoT applications and protect against potential cyber-attacks. Several key factors will shape the future of IoT penetration testing. First, the increasing complexity of IoT systems will require testing methodologies to adapt and assess intricate architectures, diverse protocols, and a wide range of devices. Second, there will be a greater emphasis on security by design, with penetration testing focusing on verifying secure coding practices, robust access controls, and secure communication protocols. Third, supply chain security will become crucial, necessitating penetration testing to assess the security measures implemented by vendors, third-party components, and firmware updates. Fourth, integrating IoT penetration testing with DevSecOps practices will ensure continuous monitoring and improvement of IoT system security. Lastly, as attackers become more sophisticated, future IoT penetration testing methodologies will need to keep pace with evolving IoT-specific attack techniques. By embracing these advancements, IoT penetration testing will play a vital role in ensuring the security and privacy of IoT deployments.

Read More

How Will IoT Revolutionize Pharmaceutical Manufacturing?

Article | April 17, 2020

Pharma is big business, but what it’s not generally recognized is, in large part, a manufacturing business with complex supply chains, finicky chemical processes and products that have to meet stringent quality controls. Few of those outside the industry think about how drugs are made safely, efficiently and at scale with reliable quality and in precisely measured doses. Even more interesting is the simple fact that pharma often produces sophisticated drugs using manufacturing processes that are decades out of date, and which are being phased out in comparable industries, such as chemical manufacturing.

Read More

Spotlight

SUSS MicroTec

SUSS MicroTec is a leading supplier of equipment and process solutions for microstructuring in the semiconductor industry and related markets...

Related News

IoT Security

AppViewX Digital Trust Platform Named IoT Security Product of the Year

AppViewX | January 12, 2024

AppViewX, the leader in automated machine identity management (MIM) and application infrastructure security, today announced the AppViewX Digital Trust Platform has been named IoT Security Product of the Year in the 8th annual IoT Breakthrough awards program, which showcases technologies and companies that drive innovation and exemplify the best in IoT technology solutions across the globe. IoT Breakthrough is a leading market intelligence organization that recognizes the top companies, technologies and products in the global IoT market. The mission of the IoT Breakthrough Awards program is to recognize the innovators, leaders and visionaries from around the globe in a range of IoT categories, including Industrial and Enterprise IoT, Smart City technology, Connected Home and Home Automation, Connected Car, and many more. This year's program attracted nominations from companies all over the world. “Unmanaged machine identities for IoT devices can create critical security vulnerabilities, but for most organizations discovering, maintaining visibility into and controlling them has become manually unfeasible,” said Gregory Webb, CEO of AppViewX. “The AppViewX Digital Trust Platform automates IoT identity management at scale across the largest, most complex and distributed customer environments, allowing customers to achieve significantly stronger security posture and meet compliance requirements.” All IoT Breakthrough Award nominations were evaluated by an independent panel of experts within the IoT industry, with the winning products and companies selected based on a variety of criteria, including most innovative and technologically advanced products and services. About AppViewX Digital Trust Platform Out of the box, AppViewX provides instant value to customers by discovering all certificates across complex enterprise environments, building and maintaining inventories, provisioning both private and public trust certificates from any CA, alerting to expiring certificates and fully automating renewals and revocation to eliminate outages and security weaknesses across machines, applications, services, and security infrastructure. About AppViewX AppViewX is trusted by the world’s leading organizations to reduce risk, ensure compliance, and increase visibility through automated machine identity management and application infrastructure security and orchestration. The AppViewX platform provides complete certificate lifecycle management and PKI-as-a-Service using streamlined workflows to prevent outages, reduce security incidents and enable crypto-agility. Fortune 1000 companies, including six of the top ten global commercial banks, five of the top ten global media companies, and five of the top ten managed healthcare providers rely on AppViewX to automate NetOps, SecOps, and DevOps. AppViewX is headquartered in New York with offices in the U.K., Australia and three development centers of excellence in India. For more information, visit https://www.appviewx.com and follow us on LinkedIn and Twitter.

Read More

Software and Tools

ATEL® Unveils the WB550 Apex by ATEL™: The Ultimate 5G Indoor Router with Unmatched Connectivity, Security, and Value

PR Newswire | October 25, 2023

ATEL®, a leader in telecommunications technology, is excited to announce the launch of its latest innovation, the WB550 Apex by ATEL™ 5G Indoor Router. Designed to meet the most demanding Internet connectivity needs, the WB550 Apex by ATEL™ offers unparalleled data speeds, robust security features, and the power to connect up to 32 users. As more of our lives shift to the cloud, having a real-time connection to the Internet is no longer an option, explains Terence "TC" Caston VP of Product Marketing: "Our businesses and homes rely on low-latency applications that perform best with networks that have the power to support them. ATEL® has ensured the network's edge devices have the power to deliver!" The WB-550 FWA (Fixed Wireless Access) device gives your business or home the reliability and power to connect to the things that move you. Key highlights of the WB-550 include: Support for NSA or SA 5G networks C-Band 5G and LTE Cat-19 fallback for lightning-fast speeds in areas without 5G Connections for up to 32 devices on its powerful Wi-Fi 6 network For managing your deployment of devices, ATEL® has also included its premiere device remote management solution called ATRACS™. Our remote management portal has been designed to bring the best-of-breed features to every ATEL® device we launch with two years of free service! About ATEL Asiatelco Technologies Co. (ATEL®) was established in 2003. Since its inception, ATEL® has been growing steadily with its sales covering more than 50 countries. ATEL's business model is JDM/ODM for serving wireless operators and branded customers. With 20 years of accumulated experience, ATEL® has built a strong, effective, and efficient team in R&D and manufacturing. Customers can always rely on the ATEL® team's performance. Quality, flexibility, on-time delivery and lower cost, are just some of the key factors of success at ATEL® and the key to customer satisfaction. ATEL-USA was established in 2017, with its headquarters in Newport Beach, California. We have invested in the industry's top talent for hardware, software, marketing, quality, and operations. This has allowed us to continue the transition from a 3rd Party ODM to a full-service OEM supplier of quality wireless products. Our products include FWA (Fixed Wireless Access), POTs replacement devices, mobile broadband routers, hot spots, home phone connect, OBD, CPE, IoT, safety devices, and smart devices for the US market. A strong, effective, and efficient R&D team, along with the manufacturing team, has positioned ATEL-USA to enter into the OEM space.

Read More

Enterprise Iot

Nokia, BT Group and MediaTek trial 5G RedCap technology to accelerate the Internet of Things

MarketScreener | October 18, 2023

Nokia, together with BT Group and MediaTek today announced that they have successfully completed trials of 5G Reduced Capability (RedCap) technology with RedCap devices. The trial, which took place at BT Group's Adastral Park site, utilized Nokia's AirScale RAN portfolio, EE's 5G Standalone (SA) network, and MediaTek's RedCap testing platform. RedCap is a technology introduced in 3GPP Release 17 that brings 5G to devices that do not require its full capabilities. It has the potential to expand the IoT ecosystem and accelerate its deployment within the industry. BT Group is evaluating RedCap to support new 5G use cases which could benefit both EE's business and consumer customer bases. 5G devices such as smartphones often have complex hardware and power-hungry features which leads to higher cost, size, and power consumption. RedCap technology focuses on simplifying 5G devices, particularly small IoT devices such as wearables or health trackers for consumers as well as ruggedized routers, and environmental or other condition-based monitoring sensors. These devices have less demand for battery life and lower bandwidth requirements. RedCap ensures they maintain performance and optimizes their power efficiency. Nokia has played a pivotal role in advancing RedCap IoT functionality together with the telecommunications industry. Greg McCall, Chief Networks Officer at BT Group said: 'This trial with Nokia demonstrates the potential of RedCap technology in unlocking a new wave of innovation within the 5G services ecosystem. This is especially the case as we move towards the arrival of 5G SA, bringing with it enhanced reliability, responsiveness, security, and speed which - through 5G RedCap - promises to benefit a host of new IoT devices and use cases.' Robert Moffat, Deputy Director Europe Mobile Business Development at MediaTek, said: 'Our collaboration with Nokia and BT Group for this trial of 5G RedCap technology aligns with MediaTek's commitment to driving innovation and expanding the potential of 5G SA to include a wider ecosystem of devices and use cases.' Phil Siveter, CEO, UK and Ireland at Nokia, commented: 'The introduction of RedCap will unlock new 5G opportunities for many industries, with potentially billions of new devices connected with 5G. Our field tests with BT Group show that Nokia 5G Standalone networks are ready to support RedCap devices.'

Read More

IoT Security

AppViewX Digital Trust Platform Named IoT Security Product of the Year

AppViewX | January 12, 2024

AppViewX, the leader in automated machine identity management (MIM) and application infrastructure security, today announced the AppViewX Digital Trust Platform has been named IoT Security Product of the Year in the 8th annual IoT Breakthrough awards program, which showcases technologies and companies that drive innovation and exemplify the best in IoT technology solutions across the globe. IoT Breakthrough is a leading market intelligence organization that recognizes the top companies, technologies and products in the global IoT market. The mission of the IoT Breakthrough Awards program is to recognize the innovators, leaders and visionaries from around the globe in a range of IoT categories, including Industrial and Enterprise IoT, Smart City technology, Connected Home and Home Automation, Connected Car, and many more. This year's program attracted nominations from companies all over the world. “Unmanaged machine identities for IoT devices can create critical security vulnerabilities, but for most organizations discovering, maintaining visibility into and controlling them has become manually unfeasible,” said Gregory Webb, CEO of AppViewX. “The AppViewX Digital Trust Platform automates IoT identity management at scale across the largest, most complex and distributed customer environments, allowing customers to achieve significantly stronger security posture and meet compliance requirements.” All IoT Breakthrough Award nominations were evaluated by an independent panel of experts within the IoT industry, with the winning products and companies selected based on a variety of criteria, including most innovative and technologically advanced products and services. About AppViewX Digital Trust Platform Out of the box, AppViewX provides instant value to customers by discovering all certificates across complex enterprise environments, building and maintaining inventories, provisioning both private and public trust certificates from any CA, alerting to expiring certificates and fully automating renewals and revocation to eliminate outages and security weaknesses across machines, applications, services, and security infrastructure. About AppViewX AppViewX is trusted by the world’s leading organizations to reduce risk, ensure compliance, and increase visibility through automated machine identity management and application infrastructure security and orchestration. The AppViewX platform provides complete certificate lifecycle management and PKI-as-a-Service using streamlined workflows to prevent outages, reduce security incidents and enable crypto-agility. Fortune 1000 companies, including six of the top ten global commercial banks, five of the top ten global media companies, and five of the top ten managed healthcare providers rely on AppViewX to automate NetOps, SecOps, and DevOps. AppViewX is headquartered in New York with offices in the U.K., Australia and three development centers of excellence in India. For more information, visit https://www.appviewx.com and follow us on LinkedIn and Twitter.

Read More

Software and Tools

ATEL® Unveils the WB550 Apex by ATEL™: The Ultimate 5G Indoor Router with Unmatched Connectivity, Security, and Value

PR Newswire | October 25, 2023

ATEL®, a leader in telecommunications technology, is excited to announce the launch of its latest innovation, the WB550 Apex by ATEL™ 5G Indoor Router. Designed to meet the most demanding Internet connectivity needs, the WB550 Apex by ATEL™ offers unparalleled data speeds, robust security features, and the power to connect up to 32 users. As more of our lives shift to the cloud, having a real-time connection to the Internet is no longer an option, explains Terence "TC" Caston VP of Product Marketing: "Our businesses and homes rely on low-latency applications that perform best with networks that have the power to support them. ATEL® has ensured the network's edge devices have the power to deliver!" The WB-550 FWA (Fixed Wireless Access) device gives your business or home the reliability and power to connect to the things that move you. Key highlights of the WB-550 include: Support for NSA or SA 5G networks C-Band 5G and LTE Cat-19 fallback for lightning-fast speeds in areas without 5G Connections for up to 32 devices on its powerful Wi-Fi 6 network For managing your deployment of devices, ATEL® has also included its premiere device remote management solution called ATRACS™. Our remote management portal has been designed to bring the best-of-breed features to every ATEL® device we launch with two years of free service! About ATEL Asiatelco Technologies Co. (ATEL®) was established in 2003. Since its inception, ATEL® has been growing steadily with its sales covering more than 50 countries. ATEL's business model is JDM/ODM for serving wireless operators and branded customers. With 20 years of accumulated experience, ATEL® has built a strong, effective, and efficient team in R&D and manufacturing. Customers can always rely on the ATEL® team's performance. Quality, flexibility, on-time delivery and lower cost, are just some of the key factors of success at ATEL® and the key to customer satisfaction. ATEL-USA was established in 2017, with its headquarters in Newport Beach, California. We have invested in the industry's top talent for hardware, software, marketing, quality, and operations. This has allowed us to continue the transition from a 3rd Party ODM to a full-service OEM supplier of quality wireless products. Our products include FWA (Fixed Wireless Access), POTs replacement devices, mobile broadband routers, hot spots, home phone connect, OBD, CPE, IoT, safety devices, and smart devices for the US market. A strong, effective, and efficient R&D team, along with the manufacturing team, has positioned ATEL-USA to enter into the OEM space.

Read More

Enterprise Iot

Nokia, BT Group and MediaTek trial 5G RedCap technology to accelerate the Internet of Things

MarketScreener | October 18, 2023

Nokia, together with BT Group and MediaTek today announced that they have successfully completed trials of 5G Reduced Capability (RedCap) technology with RedCap devices. The trial, which took place at BT Group's Adastral Park site, utilized Nokia's AirScale RAN portfolio, EE's 5G Standalone (SA) network, and MediaTek's RedCap testing platform. RedCap is a technology introduced in 3GPP Release 17 that brings 5G to devices that do not require its full capabilities. It has the potential to expand the IoT ecosystem and accelerate its deployment within the industry. BT Group is evaluating RedCap to support new 5G use cases which could benefit both EE's business and consumer customer bases. 5G devices such as smartphones often have complex hardware and power-hungry features which leads to higher cost, size, and power consumption. RedCap technology focuses on simplifying 5G devices, particularly small IoT devices such as wearables or health trackers for consumers as well as ruggedized routers, and environmental or other condition-based monitoring sensors. These devices have less demand for battery life and lower bandwidth requirements. RedCap ensures they maintain performance and optimizes their power efficiency. Nokia has played a pivotal role in advancing RedCap IoT functionality together with the telecommunications industry. Greg McCall, Chief Networks Officer at BT Group said: 'This trial with Nokia demonstrates the potential of RedCap technology in unlocking a new wave of innovation within the 5G services ecosystem. This is especially the case as we move towards the arrival of 5G SA, bringing with it enhanced reliability, responsiveness, security, and speed which - through 5G RedCap - promises to benefit a host of new IoT devices and use cases.' Robert Moffat, Deputy Director Europe Mobile Business Development at MediaTek, said: 'Our collaboration with Nokia and BT Group for this trial of 5G RedCap technology aligns with MediaTek's commitment to driving innovation and expanding the potential of 5G SA to include a wider ecosystem of devices and use cases.' Phil Siveter, CEO, UK and Ireland at Nokia, commented: 'The introduction of RedCap will unlock new 5G opportunities for many industries, with potentially billions of new devices connected with 5G. Our field tests with BT Group show that Nokia 5G Standalone networks are ready to support RedCap devices.'

Read More

Events