Internet of Things - Solutions from Silicon Labs

Silicon Labs provides the small, energy-friendly building blocks that you find inside everyday objects, internet infrastructure, home and buildings, health and fitness and in products that connect to the internet.

Spotlight

Arrelic

Arrelic is a fast-growing deep technology firm aiming to bring the next level of IoT based sensor technology to transform the mode of manufacturing operation and maintenance practice of various industries with extensive expertise in Reliability Engineering, Predictive Maintenance, Industrial Internet of Things (IIoT) Sensors, Machine Learning and Artificial Intelligence.

OTHER ARTICLES
IoT Security

IoT Standards and Protocols Explained

Article | June 27, 2023

For businesses, the transformative power of IoT is increasingly significant with the promise of improving operational efficiency and visibility, while reducing costs. However, IoT does not come without risks and challenges. While concerns over security and data privacy continue to rise, the lack of IoT standards remains one of the biggest hurdles. The increasing number of legacy, single-vendor, and proprietary solutions cause problems with disparate systems, data silos and security gaps. As IoT successes become more dependent on seamless interoperability and data-sharing among different systems, we want to avoid the scenario of a fragmented market with numerous solutions that simply don’t work with each other.

Read More
IoT Security

IOT MARKET & TRENDS

Article | June 28, 2023

2022 looks bright for power optimization! The vibrant research and development in Internet of Things (IoT) is fueling the expansion of wireless monitoring solutions and enabling giant leaps in terms of low-power design. A longer lifetime for your batteries, and thus for your device, is a dream about to come true. We have gathered some of the most notable power optimization trends that are getting us all excited for 2022… 5G, the next era of broadband cellular networks will offer improved power saving capabilities The next wave of wider 5G cellular technology is designed to support various new highly challenging industrial use cases. These usually require increased hardware complexity and more processing, together with higher processing power. These requirements can raise power consumption quite significantly. Smart power consumption and energy efficiency are thus becoming keys for the success of these applications and 5G technology.To that extent, 5G New Radio (NR) has progressed swiftly. The new 3GPP™ release is designed to significantly improve the performance, flexibility, scalability, and efficiency of current mobile networks. Improved power saving features now allow IoT developers to get the most out of the available battery capacity. This could make all the difference for new IoT use cases and efficiencies. A new generation of sensors are optimized for low power technologies New families of ‘breakthrough’ sensors, based on anultra-low power architectureare optimized for use in compact wireless devices. These sensors offer a richer set of functionalities and can be combined to create new insights (sensor fusion). One of the greatest challenges facing developers of these small form-devices is power consumption. Aware of these limitations, hardware manufacturers have been working hard to address them. Integrated circuit designs and techniques are now using less power while smart processing capabilities are enabling the sensors to intelligently manage sensing functionalities,delivering ultra-low power performance for best-in-class power consumption. The use of advanced Low Energy Bluetooth and wireless protocols (e.g. Bluetooth Low Energy (BLE) or ZigBee Green Power) also allows the transmission of data to the gateway more efficiently compared to prior solutions, opening new possibilities for developers. Big Data, Analytics, Machine Learning and Edge computing are picking up the pace The explosion in data volume and diversity is forcing organizations to rethink the way they process the information. Indeed, capturing, sending and processing the information in the cloud can be taxing for the network, the storage and the computing infrastructures which demands more processing power, hence the need to keep the transmission window as short as possible. This has led to the development of advanced devices capable of collecting, processing and storing data autonomously before the data is sent to the servers. This concept is calledEdge computing. By reducing the need for data to be streamed through the networks, diminishing computing and processing costs,Edge computing contributes to optimizing power performance, whilst delivering quality data in a more sustainable way. The rise of DevOps and new IoT Device Management platforms are contributing to better efficiency and better devices The rise ofDevOpshas been swift. Derived from Development and Operations, ‘DevOps’ teams are responsible for making sure that the infrastructure is being maintained properly.With the help of IoT Device Management platforms—which are a central part of today’s IoT ecosystems— DevOps teams can better manage, scale and operate their fleet of devices remotely and reduce long-term operational costs.One of the areas that benefits from the rise of DevOps implementation is power supply optimization, as more efficient protocols such as Lightweight Machine to Machine (LwM2M) allow for device and battery monitoring, remote device actions and faster communication. Harvesting technologies are becoming more effective Power harvesting technologies include processes where energy from ambient sources such as the sun, temperature, movement or wind, is captured and stored to power wireless autonomous devices. Now gaining experience,harvesting technologies can exploit natural resources better than ever before. As a result,the gap between the power requirements of embedded systems and the energy generated by energy harvesting systems is finally closing. Industrial applications for these technologies are still very limited, but coupled to efficient rechargeable batteries, they can present new opportunities for devices deployed in wild remote areas. Power optimization tools are becoming increasingly exhaustive and reliable Battery optimization is everyone's business and needs to be considered throughout the overall system performance analysis, from prototyping to deployment and on toward maintenance cycles. Several innovating tools haveappeared on the market over the past few years and developers have now access toa rich ecosystem of tools to analyze their overall system performance. Wisebatt for Saft for example can help creating a virtual prototype and simulate its consumption.Deutsche Telekom’s IoT Solution Optimizergoes even further. You can model the complete system to identify potential energy consumption issues or leaks. The system can not only recommend the right combination of power saving features based on your use case, but also can help you visualize how communication payload size, protocol use and communication frequency impact your battery life. When at the prototype stage,Qoitec Otii solution measures in real time the consumption of your device at various temperatures, up to the measurement of the firmware and hardware operations without the need for expensive testing. These tools are constantly enhanced and improved to deliver better analysis and more accurate data. With an increased awareness from IoT developers of the stakes of power consumption and the growing rate of low-power innovations, batteries are now able to outlive the devices they’re in. This opens the doors tomany new markets and applications and above all to more sustainable consumption patterns. When we told you the future looks bright, we weren’t joking!

Read More
Enterprise Iot

IOT Modern manufacturing—does your network have what it takes?

Article | July 20, 2023

Manufacturers were already digitizing their processes before March 2020. The COVID-19 pandemic gave IT and operational professionals in the manufacturing space reasons to want to move faster. Teams that can’t work on the factory floor (pandemic, weather, closed roads, etc.) need a way to monitor and control processes over the network. Supply chain woes—like wildly fluctuating demand and the container ship that blocked the Suez Canal—highlighted the need for agility. A skilled labor shortage has further accelerated plans for automation. Digitization brings visibility and agility The fourth industrial revolution, also known as Industry 4.0, lays the foundation of modern digital manufacturing. It brings together cyber and physical systems, automation, industrial IoT, and better vertical and horizontal integration. The network has a starring role in digital manufacturing, connecting people and applications in any location to factory-floor assets like sensors, actuators, cameras, and industrial automation and control systems (IACS). Benefits of digitization include improved overall equipment effectiveness (OEE) uptime, product quality, worker safety, cybersecurity, 24/7 asset monitoring and faster new product introduction and accelerating plant buildouts. Four essentials for manufacturing networks As IT and operational professionals work to innovate traditional manufacturing facilities and operations, we must consider that digital manufacturing requires more networks. Here are guidelines for making sure your manufacturing network is up to the task. Use network devices specifically designed for industrial environments like factories In addition to high performance and reliability, industrial routers, switches, and firewalls need to withstand harsh environmental conditions like extreme temperatures, shock, vibration, and humidity. They also need to be able to control access, have support for real-time industrial protocols, and enable the flow of key operational data to move across applications in the cloud. Further, the operational networks they build need to be scalable and highly resilient. We designed our industrial routers and switches to meet these requirements. Give IT and OT visibility and control into what they care about The manufacturing network is a joint project of the IT and OT teams. If you’re on the IT team, you want a solution that works with your existing network management and security applications, and doesn’t require significant training or disruption. You want to automate network maintenance and quickly identify and solve performance issues, especially in this business-critical space. If you’re on the OT team, you’re probably not an IT expert. You want visibility of issues that impact availability, product quality, workforce effectiveness and straightforward recommendations to resolve them. Cisco DNA Center – proven in the largest IT networks – meets all these needs. It automates time-consuming manual tasks, continuously monitors network health, and provides reports and controls on an easy-to-use dashboard. Cisco Cyber Vision gives you visibility into assets and processes. For agile manufacturing, look for “plug-and-play” deployment Manufacturers are simultaneously expanding production, hyper-customizing products, improving operations, and launching new products and services. To achieve these goals, you need the agility to scale product capacity, change product mix, and reallocate resources as needed. Quickly shift networking and production resources where you need them using Cisco DNA Center’s plug-and-play onboarding and provisioning. Pay careful attention to cybersecurity Cybersecurity starts with knowing everything that is connected to your industrial network, who’s talking to each other and what they are saying. Cisco Cyber Vision automatically takes a complete inventory. OT teams use a graphical interface to create production zones (aka network segments) containing all assets that need to communicate. (The painting controller doesn’t need to talk to the assembly-line controller.) Cisco Identity Services Engine (ISE) deploys polices that block unintended communications between segments to keep malware infections from spreading. Cisco Cyber Vision also takes a baseline of each asset’s usual communications patterns, alerting OT and IT teams to unusual behavior that could be a sign of a security breach. Prepare to do more with less The manufacturing skills shortage has widened the skills gap, with fewer experts left on the plant floor to prevent mistakes and solve crises. Connecting your plant floor helps you do more with less. A resilient network with the four qualities I’ve described—rugged devices, IT and OT collaboration, simpler and agile network management, and cybersecurity—helps you proactively identify potential problems, discover the cause, and resolve them before they affect production or quality.

Read More

How 5G Will Unlock Unseen Opportunities in Industrial IoT

Article | April 27, 2020

Manufacturing industry or the Industrial Internet of Things has been one of the driving verticals for development of 5G technologies. Wide 5G deployement for Industrial IoT has long been in the pipeline but we might expect it to be a reality very soon. The true success of 5G depends on the verticals as trends suggest that that Industrial IoT alone will triple the number of needed base stations globally. And many verticals will need efficient wireless connectivity to become successful. 5G has features that are specifically designed to address the needs of vertical sectors, such as network slicing and URLLC. The ultra-reliable low latency communications and massive machine type communications required by the IIoT will soon be realized. Table of Contents: How Will 5G Impact Industrial IoT? 5G Accelerations for IIoT Industrial 5G How Will 5G Benefit Industrial IoT? IoT is a B2B application and users just want to get actionable data from their sensors and not worry about whether it’s old data or unreliable data. I think 5G changes this dynamic significantly over the long term by standardizing and simplifying the experience and interactions, and possibly engaging more of the industry to help solve IoT’s problems but also improve the total experience. - Anshel Sag, analyst at Moor Insights & Strategy • Data-Transfer Speeds Any IoT is said to be commercially successful depending on how fast it can set up communications with other IoT devices, software based websites or applications, phones, and tablets. 5G promises exactly all of this with significant increase in transfer speeds. 5G is 10x faster than its LTE counterparts and allows IoT devices to communicate and share data faster than ever. All IoT devices will benefit from the faster speed of 5G with reduced lag and improved sending and receiving of data and notifications between connected devices. • Greater Network Reliability 5G networks also offer more reliable and stable connection which is extremely important for any IoT including devices like locks, security cameras and monitoring systems that depend on real-time updates. With reliable connectivity consumers will be the greater beneficiary. It is however, imperative for manufactures to trust and invest in 5G compatible devices to reap the benefits of high-speed connectivity, very low latency, and a greater coverage that will arrive with the next generation network. READ MORE:How Will the Emergence of 5G Affect Federated Learning? 5G Accelerations for IIoT • Diversity in Industrial IoT The opportunities that industrial IoT bring with is varied and its used cases span the spectrum from indoor to outdoor, less demanding to mission-critical, data rate from dozens of bps to gbps, device motion from fixed to mobility, and power source from button battery to high voltage. Predictive maintenance, smart metering, asset tracking, and fleet management are some of the commonly known opportunities for IIoT, which be extended further by 5G through continued diversity and expansion. • 5G Inspires Untapped Frontiers Industrial IoT application areas such as mobile robot control in production automation and autonomous vehicles in open pit mining require wide mobility, low latency and mission-critical reliability. They rely on wireless access at 50ms to 1ms latency and service reliability from 5 nines to 6 nines. Though 4G/LTE has attempted to address these areas of IIoT application it has failed due to unsatisfactory performance. With ultra-reliable and low latency connection, 5G will take industrial IoT to unconquered spaces. • Managing the Enterprise 5G Network Typically, enterprise IT is responding to the business demand from Operational Technology (OT) and mandates security, integration, visibility, control, and compatibility. In this scenario, 5G is not about “what,” but about “how”. IT needs to consider the right approach to bring 5G to the enterprise and decide whether to co-manage with the service provider (SP) or self-manage. The experience of IT in managing Industrial Ethernet and Wi-Fi may not hold when it comes to 5G. IT will likely require OT’s partnership to address complexity, security, integration, and other new challenges that 5G presents. Industrial 5G The potential for industrial 5G huge as it enables whole new business models. Industrial IoT has a core requirement of the ability to connect sensors, devices, software applications, production process, workers and consumers. The connectivity requires to be seamless vertical and horizontal integrations of all layers of automation pyramids that increases operational efficiency of the plant floor and the supply chain by optimal use of data, information and analytics. This can be improved by five key elements: • Improved Connectivity • Availability • Low Latency • Flexibility • Speed Industrial 5G will impact these areas of the manufacturing industry to guide the success of Industrial IoT. Industrial 5G will play a key role in helping industrial users achieve the goals of Industrial IoT. 5G offers wireless communications services with reduced latency, increased connection density, and improved flexibility compared to the current 4G generation. 5G technology has a theoretical downlink peak speed of 20 Gbps (gigabits per second), which is about 20 times faster than the current generation. The key is to start building IoT devices with broadly adopted operating systems, built-in security all the way down to the silicon, verifiable and updatable firmware, and mainstream application development tooling. - Anshel Sag, analyst at Moor Insights & Strategy The push and pull in achieving 5G success in IoT will be there until technology providers and end users work together to set up a consensus on standardization. The success will also depend on best-of-breed approach allowing the introduction of new technology over the lifecycle. Software and system integration will also be important attributes to a successful 5G deployment. READ MORE:How Will IoT Revolutionize Pharmaceutical Manufacturing?

Read More

Spotlight

Arrelic

Arrelic is a fast-growing deep technology firm aiming to bring the next level of IoT based sensor technology to transform the mode of manufacturing operation and maintenance practice of various industries with extensive expertise in Reliability Engineering, Predictive Maintenance, Industrial Internet of Things (IIoT) Sensors, Machine Learning and Artificial Intelligence.

Related News

Events