Scaling Internet of Things Data Movement with Amazon* Kinesis*

"Collecting, storing, and analyzing high-throughput information can help companies stay up to date on their business, customers, and assets. In the past, these capabilities required complex software and a lot of infrastructure that was expensive to buy, provision, and manage. Today, Amazon• Kinesis* makes it easy to set up high-capacity pipes that can collect and distribute data in real time, at any scale — enabling fast movement of machine data from edge to cloud for consumption by applications to make quick and decisive data-driven actions.
So, instead of locking data away in large files that are not readily accessible, companies may utilize Inter Gateway Solutions for the Internet of Things (Inter Gateway Solutions for the loT) to send each event to Amazon Kinesis, making them available for real-time processing. As such, • Data can be continuously analyzed without waiting until the end of the business day • Key business metrics can be closely monitored via dynamic dashboards • Data can be securely shared with third parties for additional applications This paper explains how to stream data from an Inter processor-based loT gateway to Amazon Kinesis, and how applications can receive streaming data from Amazon Kinesis"

Spotlight

Ceresana

Ceresana is a leading international market research institute for the segments chemicals, plastics, industrial goods, and packaging. The company has been providing more than 10,000 customers from trade and industry in 60 countries with up-to-date analyses for over 15 years. The services of Ceresana for manufacturers, processors, and associations include customized single-client studies and more than 160 multi-client market studies.

OTHER ARTICLES
Enterprise Iot

Revealing IoT Security Realities in Device Interlinking Era

Article | July 20, 2023

Driving digital transformation in manufacturing: Embracing seamless connectivity, data integration and risk-proof IoT security for enhanced efficiency, product quality, and innovation in industry 4.0. Contents 1. Introduction to IoT Security in the Connected Era 1.1 Significance of IoT Security for Business Resilience 1.2 Current Scenario of IoT Security 2. Next-Gen Authentication and Authorization for IoT Devices 3. Secure Ecosystems for Businesses Through IoT Network Access Control 4. Quantum Cryptography: Fortifying IoT Data Protection 5. IoT Security Providers for Connectivity in Businesses 5.1 Armis 5.2 Mocana 5.3 Inside Secure 5.4 V5 Systems 5.5 Nozomi Networks 5.6 Dragos 5.7 Claroty 5.8 ForgeRock 5.9 Praetorian 5.10 Security Innovation 6. Key Takeaways 1. Introduction to IoT Security in the Connected Era In the connected era, the proliferation of Internet of Things (IoT) devices has brought unparalleled convenience and efficiency to businesses and individuals alike. The interlinking of devices and their efficient networking is the need of the hour for businesses to function effectively with maximum productivity. However, IoT security has become paramount with the exponential growth of interconnected devices. Ensuring the security and integrity of these devices and the data they handle is crucial for businesses to safeguard their operations, protect customer privacy, and maintain trust in the digital ecosystem. 1.1 Significance of IoT Security for Business Resilience IoT security in businesses encompasses a comprehensive approach to identifying, assessing, and mitigating potential vulnerabilities throughout the IoT ecosystem. This includes implementing robust authentication mechanisms, encryption protocols, and access controls to prevent unauthorized access. Monitoring and updating IoT devices to address emerging threats is essential to maintaining a robust security posture. Business resilience requires staying proactive in the face of ever-evolving cyber threats. Regular security assessments, vulnerability testing, and incident response planning are essential to identifying and addressing potential weaknesses in IoT devices before malicious actors can exploit them. This proactive approach enables organizations to respond to security incidents swiftly, minimize the impact of a breach, and recover operations more efficiently. 1.2 Current Scenario of IoT Security IoT security requires the integration of cutting-edge technologies, such as AI and ML, to proactively detect and respond to cyber threats. Businesses can identify patterns, anomalies, and potential security risks by analyzing the vast amounts of data generated by IoT devices. Advanced security measures also involve securing communication channels and adopting secure coding practices to minimize the risk of data breaches or tampering. Correct and legitimate information in IoT security is crucial, as inadequate security measures can expose businesses to significant risks. Cyberattacks targeting IoT devices, such as botnets, ransomware, and data breaches, have already resulted in substantial financial losses and reputational damage for organizations worldwide. To stay ahead of malicious actors, businesses must prioritize ongoing security training, collaborate with industry experts, and adhere to established security standards. 2. Next-Gen Authentication and Authorization for IoT Devices The future of IoT security relies on next-generation authentication and authorization mechanisms designed to address the unique challenges of IoT environments. Biometric and behavioral authentication techniques offer enhanced security by verifying user identity based on physical or behavioral characteristics, adding an extra layer of protection for IoT devices. Context-aware access control adapts permissions dynamically based on contextual factors such as device location and user behavior, ensuring secure access in dynamic IoT networks. Additionally, smart manufacturing leveraging blockchain technology provides immutable and decentralized identity management, mitigating the risk of identity fraud and enhancing trust in IoT ecosystems. Embracing these advanced authentication and authorization approaches allows businesses to fortify the security of their IoT devices and establish a resilient foundation for the connected future. 3. Secure Ecosystems for Businesses Through IoT Network Access Control IoT network access control plays a pivotal role in ensuring the security and integrity of business ecosystems. With the proliferation of IoT devices, controlling and securing access to these interconnected devices becomes paramount. Implementing robust network access control mechanisms helps businesses establish secure network segmentation, granting specific access privileges based on roles and responsibilities. Segmenting IoT devices from critical systems can contain potential breaches, limiting the impact on the entire network. Moreover, secure device authorization is essential for vetting and authenticating IoT devices before granting network access. Advanced authentication mechanisms, such as two-factor or certificate-based authentication, provide an extra layer of protection, ensuring that only trusted devices can join the network. This fortifies the ecosystem against unauthorized or compromised devices, reducing the risk of data breaches and cyberattacks. In the digital era, where data is a critical asset, network access control is not only a technical imperative but also a business necessity. Businesses must prioritize implementing these advanced access control measures to safeguard their ecosystems, protect sensitive data, and maintain customer trust. A secure IoT ecosystem fosters business resilience, allowing organizations to fully leverage the transformative potential of IoT while mitigating security risks effectively. 4. Quantum Cryptography: Fortifying IoT Data Protection The technology is shifting towards quantum computing, which possesses superior processing capacity. It can readily circumvent existing cryptographic algorithms. Quantum cryptography is a secure method for encrypting data and assuring the highest level of security by providing only a single secret key to decrypt, only in the data's owner's possession. In contrast to traditional quantum computers, quantum computing's cryptography relies on physical rather than mathematical properties. It is a completely impenetrable system; imitating or viewing any data protected by encoded encryption in a quantum state is impossible. It is also impervious to any quantum computing applications. Public key cryptography algorithms, which are highly secure and ensure data protection against any quantum computer cyberattack, provide this protection against any quantum computer cyberattack. 5. IoT Security Providers for Connectivity in Businesses 5.1 Armis Armis provides the foremost asset intelligence platform on the market, designed to address the new threat landscape created by connected devices. Without an agent, it offers rich facts and context for device identification and classification, including manufacturer, model, IP and MAC addresses, OS, reputation, and usernames. The platform monitors device behavior and detects active vulnerabilities and threats in real-time. Armis provides reliable threat detection and response using premium threat intelligence feeds and device behavior insights. The Armis Threat Detection Engine quickly protects the environment by combining threat intelligence sources. Policy violations and threat detections can be enforced automatically or manually, allowing companies to disconnect or quarantine suspicious or malicious devices through network infrastructure or integrated security solutions. Armis Agentless Device Security Platform installs easily without network changes. It enhances infrastructure to protect assets. Its technology provides visibility, proactive threat detection, and effective cybersecurity management to protect vital assets and company activities. 5.2 Mocana Mocanacyber security for the Internet of Things, operational technology, and vital infrastructure. Mocana's tightly integrated solutions assist businesses in mitigating the risk of a cyber-attack, adhering to industry standards, and safeguarding intellectual property by ensuring that devices and processes are trusted end-to-end, from device fabrication to deployment. DigiCert for Connected Devices offers a streamlined and efficient solution for seamless application integration and migration, eliminating the need for custom code across various systems. This approach enhances resilience, maintains continuous perimeter security, and increases agility in responding to vulnerabilities or attacks. Digital trust is at the core of every endpoint, securing and hardening devices in the field with plug-and-play applications. Immutable identity simplifies device discovery and identification, streamlining compliance audits and providing real-time oversight of the entire IoT environment. Secure boot processes, remote shutdown capabilities, and comprehensive visibility and control over network connections further enhance security. 5.3 Inside Secure Inside Secureis a leading provider of security solutions for mobile and connected devices. They offer a comprehensive software portfolio, silicon IP, tools, and expertise to safeguard customers' transactions, content, applications, and communications. With a strong focus on security, the company delivers products with advanced technical capabilities that cover a wide range of security requirement levels. They serve various demanding markets, including network security for IoT, content & application protection, and mobile payment & banking. Inside Secure's technology plays a crucial role in protecting solutions for a diverse range of customers, including service providers, content distributors, security system integrators, device vendors, and semiconductor manufacturers. Their deep security expertise and experience allow them to deliver innovative and differentiated security solutions to address the evolving security challenges in the rapidly changing landscape of mobile and connected devices. 5.4 V5 Systems V5 Systems a technology firm recognized for introducing the world’s inaugural edge computing platform designed specifically for outdoor environments. The company has established a comprehensive solution addressing outdoor security, power, and computing requirements. V5 Systems delivers advanced outdoor security solutions along with a versatile computing platform capable of supporting various third-party applications. Additionally, the innovative ongoing power platform developed by V5 Systems enables unparalleled computing capabilities in any outdoor setting. With a commitment to leading the charge in Industrial IoT technology advancements, V5 Systems is dedicated to ongoing innovation. While the company prioritizes its customers and partners, ensuring the delivery of products and services with the highest level of enterprise support and customer care; it is focused on fostering a safer, smarter world, empowering stakeholders. 5.5 Nozomi Networks Nozomi Networks specializes in protecting critical infrastructure from cyber threats, offering a unique platform that combines network and endpoint visibility, threat detection, and AI-powered analysis for faster and more effective incident response. To mitigate IoT data security challenges, Nozomi Networks recommends starting with the assumption that IoT devices are inherently insecure and each device can serve as a vulnerable entry point into the network and business processes. Key strategies to address IoT security challenges include network Segmentation by limiting connectivity of IoT devices and networks to the business network, Vulnerability Management and Cybersecurity Monitoring by Monitoring network traffic, which provides insight into device behavior and helps identify malicious events and zero-day attacks. It helps organizations identify all communicating assets on their networks, detect vulnerable OT and IoT assets, monitor IoT cybersecurity threats and process reliability. 5.6 Dragos Dragoswitha global mission to safeguard civilization's industrial infrastructure, offers influential industrial cybersecurity technology through the Dragos Platform. This platform gives customers visibility into their ICS/OT assets, vulnerabilities, threats, and response actions. The strength of the Dragos Platform lies in its ability to incorporate Dragos's industry-leading OT threat intelligence and insights from the Dragos services team into the software. Additionally, Dragos adopts a community-focused approach, allowing customers access to the most extensive array of industrial organizations for collective defense and broad visibility. To ensure compliance with OT cybersecurity controls, Dragos provides industrial cybersecurity solutions tailored to meet cybersecurity control requirements, including NERC-CIP, TSA Pipeline, US Federal BOD, EU NIS, KSA OTCC, and more. Furthermore, Dragos WorldView Threat Intelligence provides situational awareness of adversary activity and vulnerabilities affecting industrial sectors, including adversary research, strategic intelligence reports and vulnerability analysis. 5.7 Claroty Clarotyisa leading provider of industrial cybersecurity solutions, empowering organizations to secure cyber-physical systems across industrial, healthcare (IoMT), and enterprise environments, known as the Extended Internet of Things (XIoT). Their unified platform integrates with customers' existing infrastructure to offer a range of controls, including visibility, risk and vulnerability management, threat detection, and secure remote access. It offers Ongoing security and compliance posture management, including full asset inventory across the XIoT, A zero-trust security architecture critical for minimizing cyber risk in OT environments and Proactive threat detection and mitigation to address the difficulty of responding to evolving threats. With extensive experience in cyber risk management, Claroty provides robust solutions that cater to a wide range of industries, including electric, oil & gas, manufacturing, building automation systems, chemical, government, water, food & beverage, mining, transportation, and pharmaceutical. 5.8 ForgeRock ForgeRock is a leading digital identity provider that offers modern and comprehensive IAM solutions for consumers, employees, and IoT devices. Their AI-powered identity platform enables organizations to achieve Zero Trust and Continuous Adaptive Risk and Trust Assessment (CARTA) security models quickly and efficiently across hybrid IT environments.ForgeRock helps organizations deliver Zero Trust and CARTA security by continuously identifying and remediating user access risks using AI-powered analytics. With ForgeRock Intelligent Access, organizations can build secure and dynamic user journeys without impacting IT resources or application performance. The platform allows authentication and authorization with context, such as user, device, behavior, and location. ForgeRock enables the infusion of modern identity into legacy systems and environments, applying Zero Trust principles across the organization. They provide free downloads and offer resources for organizations to learn more about their solutions and implement a robust zero-trust strategy. 5.9 Praetorian Praetorian offers end-to-end Internet of Things product security evaluations and certifications, ensuring the security of IoT products from chip to cloud. Their solutions cover various technological domains, including embedded devices, firmware, wireless communications protocols, web and mobile applications, cloud services and APIs, and back-end network infrastructure. They have developed research-driven evaluation methodologies to address emerging security challenges based on the OWASP Application Security Verification Standard (ASVS). This approach allows for tiered pricing based on the comprehensiveness of the security review, accommodating different testing and budget requirements. They employ various techniques to uncover unknown vulnerabilities in their professional security evaluations, depending on the level of rigor required. 5.10 Security Innovation Security is a reputable authority in software security, assisting organizations in building and deploying more secure software. The company specializes in software security, where traditional information security and business consultants often struggle. Security Innovation offers progressive training covering the full spectrum of IoT software assurance for builders, operators, and defenders. Security Innovation conducts IoT security testing for IoT and embedded systems to ensure the secure implementation of IoT software and firmware. They meticulously review connected devices' security threats and attack surfaces, examining physical, communication, infrastructure, and application levels. Their precision security testing focuses on high-risk areas that attackers are likely to target. IoT security testing outputs include security and functional objectives, identified attack vectors, and guidance on fixing vulnerabilities through mitigating controls. 6. Key Takeaways Exploring the IoT security landscape in the era of connectivity is crucial as the Internet of Things continues to expand and impact various industries. As the number of interconnected devices surges, the IoT security landscape will become increasingly complex, with new threats and vulnerabilities constantly emerging. The need for advanced security measures and proactive cybersecurity strategies will be more critical than ever before. Innovations in device-based authentication and authorization mechanisms, such as biometric and behavioral authentication, as well as context-aware access control, will enhance the security of IoT ecosystems. Furthermore, industry-wide collaboration and adopting security standards will be essential to building a resilient IoT security landscape. Manufacturers, developers, and stakeholders must prioritize security by design, ensuring that IoT devices are built with safety as a fundamental principle. Implementing secure development practices, conducting regular security audits, and establishing effective incident response plans will bolster IoT security. Addressing security challenges becomes paramount as IoT devices become more interconnected and play a significant role in critical operations. With the growing adoption of IoT, a proactive approach to IoT security is essential to ensure the integrity, confidentiality, and availability of data and maintain the trust of users and customers. By prioritizing IoT security and taking proactive measures, organizations can fully realize the benefits of connectivity while mitigating the risks associated with the ever-expanding IoT landscape.

Read More
IoT Security

Overcoming IoT Security Challenges for Safe Implementation

Article | June 28, 2023

Explore the IoT security solutions for critical issues and proactive solutions for the safe implementation of connected devices. Delve into cross-domain interactions for secure data storage. Contents 1. Introduction 1.1 Significance of IoT Security for Safe Implementation 2. IoT Security Landscape 2.1 Emerging Threats in IoT Environments 2.2 Importance of Proactive Security Measures 3. Challenges Posed in IoT Systems 3.1 Cross-Domain Interactions 3.2 Denial of Service (DoS) Attacks 3.3 Insecure Interfaces and APIs 3.4 Vulnerable Third-Party Components 3.5 Safeguarding Data Storage and Retention 4. Solutions to Prevent Threats 4.1 Secure Integration and Communication 4.2 Traffic Monitoring and Analysis 4.3 Robust Authentication and Authorization Protocols 4.4 Patch Management and Vulnerability Monitoring 4.5 Access Control and User Authentication 5 Conclusion 1. Introduction 1.1 Significance of IoT Security for Safe Implementation The significance of IoT connectivity and security for safe implementation is paramount in today's interconnected world. Some essential points highlight its importance at both the business and advanced levels. IoT devices collect and transmit vast amounts of sensitive data. Without proper security measures, this data can be intercepted, leading to breaches of privacy and potential misuse of personal or corporate information. Implementing robust IoT security ensures the protection of data throughout its lifecycle. Safeguarding Critical Infrastructure is crucial as Many IoT deployments are integrated into critical infrastructure systems such as power grids, transportation networks, and healthcare facilities. A breach in the security of these interconnected systems can have severe consequences, including disruption of services, financial losses, and even threats to public safety. IoT security helps mitigate these risks by preventing unauthorized access and potential attacks. Mitigating financial losses, ensuring operational continuity and preventing IoT botnets and DDoS attacks contribute to security as IoT devices are often integrated into complex ecosystems, supporting various business operations. In recent years, compromised IoT devices have been used to create massive botnets for launching distributed denial-of-service (DDoS) attacks. These attacks can overwhelm networks and cause significant disruptions, affecting the targeted businesses and the internet infrastructure as a whole. Robust IoT security measures, such as strong authentication and regular device updates, can help prevent these attacks. 2. IoT Security Landscape 2.1 Emerging Threats in IoT Environments Botnets and DDoS Attacks Botnets, consisting of compromised IoT devices, can be leveraged to launch massive distributed denial-of-service (DDoS) attacks. These attacks overwhelm networks, rendering them inaccessible and causing disruptions to critical services. Inadequate Authentication and Authorization Weak or non-existent authentication and authorization mechanisms in IoT devices can allow unauthorized access to sensitive data or control of connected systems. This can lead to unauthorized manipulation, data breaches, and privacy violations. Firmware and Software Vulnerabilities IoT devices often rely on firmware and software components that may contain vulnerabilities. Attackers can exploit these weaknesses to gain unauthorized access, execute malicious code, or extract sensitive information. Lack of Encryption and Data Integrity Insufficient or absent encryption mechanisms in IoT communications can expose sensitive data to interception and tampering. Without data integrity safeguards, malicious actors can modify data transmitted between devices, compromising the integrity and reliability of the system. Physical Attacks and Tampering IoT devices deployed in public or accessible locations are vulnerable to physical attacks. These attacks include tampering, theft, or destruction of devices, which can disrupt services, compromise data, or manipulate the functioning of the IoT ecosystem. Insider Threats Insiders with authorized access to IoT systems, such as employees or contractors, may abuse their privileges or inadvertently introduce vulnerabilities. This can include unauthorized access to sensitive data, intentional manipulation of systems, or unintentional actions compromising security. Supply Chain Risks The complex and global nature of IoT device supply chains introduces potential risks. Malicious actors can exploit vulnerabilities in the manufacturing or distribution process, implanting backdoors or tampering with devices before they reach end-users. 2.2 Importance of Proactive Security Measures Security measures are vital for ensuring the safety and reliability of IoT environments. Organizations can mitigate risks and stay ahead of potential vulnerabilities and threats by taking a proactive approach. These measures include conducting regular vulnerability assessments, implementing robust monitoring and detection systems, and practicing incident response preparedness. Proactive security measures also promote a 'Security by Design' approach, integrating security controls from the outset of IoT development. Compliance with regulations, safeguarding data privacy, and achieving long-term cost savings are additional benefits of proactive security. Being proactive enables organizations to minimize the impact of security incidents, protect sensitive data, and maintain their IoT systems' secure and reliable operation. 3. Challenges Posed in IoT Systems 3.1 Cross-Domain Interactions Cross-domain interactions refer to the communication and interaction between IoT devices, systems, or networks that operate in different domains or environments. These interactions occur when IoT devices need to connect and exchange data with external systems, platforms, or networks beyond their immediate domain. Incompatibilities in protocols, communication standards, or authentication mechanisms can create vulnerabilities and potential entry points for attackers. 3.2 Denial of Service (DoS) Attacks Denial of Service attacks are malicious activities aimed at disrupting or rendering a target system, network, or service unavailable to its intended users. In a DoS attack, the attacker overwhelms the targeted infrastructure with an excessive amount of traffic or resource requests, causing a significant degradation in performance or a complete service outage. Protecting IoT devices and networks from DoS attacks that aim to disrupt their normal operation by overwhelming them with excessive traffic or resource requests becomes challenging. The issue here lies in distinguishing legitimate traffic from malicious traffic, as attackers constantly evolve their techniques. 3.3 Insecure Interfaces and APIs Insecure interfaces and application programming interfaces (APIs) refer to vulnerabilities or weaknesses in the interfaces and APIs used by IoT devices for communication and data exchange. An interface is a point of interaction between different components or systems, while an API allows applications to communicate with each other. Insecure interfaces and APIs can be exploited by attackers to gain unauthorized access to IoT devices or intercept sensitive data. Ensuring secure authentication and authorization mechanisms, proper encryption of data in transit, and secure storage of API keys and credentials, thus, becomes a challenge. 3.4 Vulnerable Third-Party Components Vulnerable third-party components refer to software, libraries, frameworks, or modules developed and maintained by external parties and integrated into IoT devices or systems. These components may contain security vulnerabilities that attackers can exploit to gain unauthorized access, manipulate data, or compromise the overall security of the IoT ecosystem. Pain points arise from the challenge of assessing the security of third-party components, as organizations may have limited visibility into their development processes or dependencies. 3.5 Safeguarding Data Storage and Retention Data storage and retention refers to the management and security of data collected and generated by IoT devices throughout its lifecycle. Safeguarding stored IoT data throughout its lifecycle, including secure storage, proper data retention policies, and protection against unauthorized access or data leakage, poses a threat. Ensuring secure storage infrastructure, protecting data at rest and in transit, and defining appropriate data retention policies include safeguarding data and maintaining the privacy of stored data. Failure to implementing strong encryption, access controls, and monitoring mechanisms to protect stored IoT data leads to this issue. 4. Solutions to Prevent Threatsc 4.1 Secure Integration and Communication Implement secure communication protocols, such as transport layer security (TLS) or virtual private networks (VPNs), to ensure encrypted and authenticated communication between IoT devices and external systems. Regularly assess and monitor the security posture of third-party integrations and cloud services to identify and mitigate potential vulnerabilities. Organizations need to invest time and resources in thoroughly understanding and implementing secure integration practices to mitigate the risks associated with cross-domain interactions. 4.2 Traffic Monitoring and Analysis Deploy network traffic monitoring and filtering mechanisms to detect and block suspicious traffic patterns. Implement rate limiting, traffic shaping, or access control measures to prevent excessive requests from overwhelming IoT devices. Utilize distributed denial of service (DDoS) mitigation services or hardware appliances to handle volumetric attacks. Organizations must deploy robust traffic analysis and anomaly detection mechanisms to identify and mitigate DoS attacks promptly. Additionally, scaling infrastructure and implementing load-balancing mechanisms become essential to handle sudden surges in traffic during an attack. 4.3 Robust Authentication and Authorization Protocols Apply secure coding practices and implement strong authentication and authorization mechanisms for interfaces and APIs. Utilize secure communication protocols (e.g., HTTPS) and enforce strict access controls to prevent unauthorized access. Regularly update and patch interfaces and APIs to address any known vulnerabilities. Organizations must conduct regular security audits of their interfaces and APIs, implement strong access controls, and regularly update and patch vulnerabilities to address these effectively. 4.4 Patch Management and Vulnerability Monitoring Conduct thorough security assessments of third-party components before integration, verifying their security track record and ensuring they are regularly updated with security patches. Establish a process for monitoring and addressing vulnerabilities in third-party components, including timely patching or replacement. Establishing strict vendor evaluation criteria, conducting regular security assessments, and maintaining an up-to-date inventory of third-party components can help address these issues and mitigate the risks associated with vulnerable components. 4.5 Access Control and User Authentication Encrypt stored IoT data to protect it from unauthorized access or leakage. Implement access controls and user authentication mechanisms to restrict data access based on role or privilege. Establish data retention policies that comply with relevant regulations and securely dispose of data when no longer needed. Clear data retention policies should be established, specifying how long data should be stored and when it should be securely deleted or anonymized to minimize data leakage risks. It's important to note that these solutions should be tailored to specific organizational requirements and constantly evaluated and updated as new threats and vulnerabilities emerge in the IoT security landscape. 5. Conclusion Ensuring the safe implementation of IoT requires overcoming various security challenges through proactive measures and a comprehensive approach. By implementing proactive security measures, organizations can mitigate risks and maintain the safety and reliability of IoT environments. Overcoming these challenges requires organizations to invest in certain integration practices, traffic analysis, authentication mechanisms, encryption protocols, and vendor evaluation criteria. Overcoming IoT security challenges for safe implementation necessitates a proactive and comprehensive approach encompassing vulnerability management, monitoring and detection, incident response preparedness, secure design practices, compliance with regulations, and robust data storage and retention mechanisms. The emergence in IoT security encompasses the incorporation of machine learning and AI for improved threat detection, the application of blockchain for secure transactions and device authentication, the integration of security measures at the edge through edge computing, the establishment of standardized protocols and regulatory frameworks, the adoption of advanced authentication methods, and the automation of security processes for efficient IoT security management. These trends aim to address evolving risks, safeguard data integrity and privacy, and enable IoT systems' safe and secure implementation.

Read More
IoT Security

Driving Rapid and Continuous Value for IoT Through an Ecosystem Approach

Article | October 11, 2023

In the wake of the COVID-19 pandemic, manufacturing is roaring back to life, and with it comes a renewed focus on Digital Transformation initiatives. The industry stands on the doorstep of its much-anticipated renaissance, and it’s clear that manufacturing leaders need to not only embrace but accelerate innovation while managing critical processes like increasing capacity while maintaining product quality. Effective collaboration will be key to doing both well, but it’s even more critical as workforces have gone and are still largely remote. As the virus swept the globe, it became apparent quickly that there would be winners and losers. Many manufacturers were caught off-guard, so to speak. Before manufacturing’s aforementioned reckoning, the industry had already been notorious for its slow adoption of the digital, data-centric mindset that has transformed other industries.

Read More
Enterprise Iot

Practical IoT Data Processing & Management for Businesses

Article | August 10, 2022

IoT has undeniably become the massive growth propellant for modern-day business. Enterprises employ intelligent systems to improve production in factories, and reduce costs, build industrial automation systems to replace human assignments, monitor and reduce energy; and develop autonomous transportation to enhance driver safety. Inside these embedded systems are sensors that rapidly transmit data that must be immediately captured, processed, and acted upon. Traditional embedded database solutions don't understand and meet the complex needs of IoT devices when it comes to processing and managing data. IoT edge database solutions that can understand the constant data stream from sensors enable devices to make crucial decisions in milliseconds. Real-time Edge Data Processing Enterprisers and business owners prefer scalable edge data management solutions to deploy hundreds of IoT devices so that each device can manage, collect, and analyze the massive amounts of data these IoT sensors produce without losing performance. These devices must capture and store critical information so that the IoT node can make independent decisions and trigger appropriate reactions. Database queries allow device apps to get the information they need to make intelligent decisions in real-time, quickly and without wasting time. To be successful in the IoT, you need the right data management software and the ability to quickly collect and connect device data rapidly to get low latency. IoT Data Processing and Management Standard data management solutions do not fully address the complexity of architecting software for IoT data processing. Despite being the primary data source, sensors are often constrained by their limitations and fail to provide sophisticated analysis. The focus of IoT data analysis and management is to harvest real-time information and make sense of it quickly. A good solution uses technologies that many developers are already familiar with, like SQL, to solve the new problem of analyzing IoT sensors directly on edge devices. Conclusion While building a device application, at every stage, developers must make tough calls to select the best data management and database software to launch their edge-centric IoT systems. Such costly decisions consume significant development and validation time as well. Using existing IoT data management platforms is a better way to deal with scaling, security, and the weight of data. Businesses can set up, connect, and grow their IoT infrastructure with these platforms. Organizations don't have to build their own IoT infrastructure from scratch. Instead, they can use IoT platforms that give them access to IoT devices, cloud infrastructure, and networks worldwide. Small and medium-sized businesses may find this method saves money.

Read More

Spotlight

Ceresana

Ceresana is a leading international market research institute for the segments chemicals, plastics, industrial goods, and packaging. The company has been providing more than 10,000 customers from trade and industry in 60 countries with up-to-date analyses for over 15 years. The services of Ceresana for manufacturers, processors, and associations include customized single-client studies and more than 160 multi-client market studies.

Related News

Putting the ‘I’ in ‘IoT’: This is the cloud-based glue that IoT needs

Belkin | October 21, 2015

The Internet of Things has been the next big thing for a decade. This year, somewhat surprisingly, it is actually becoming a reality — over a billion wireless IoT devices will be shipped by the end of 2015, according to Deloitte.Like so many others, the space is a real game of thrones as major incumbents such as Google, Microsoft, Apple, IBM, Cisco, and Intel, along with challengers like Belkin (WeMo) and others, vie to create platforms and deploy devices that connect through those platforms. And hardly a day passes without a home or consumer IoT device launching on Kickstarter or Indiegogo, generally without connectivity into anything but your phone.

Read More

Putting the ‘I’ in ‘IoT’: This is the cloud-based glue that IoT needs

Belkin | October 21, 2015

The Internet of Things has been the next big thing for a decade. This year, somewhat surprisingly, it is actually becoming a reality — over a billion wireless IoT devices will be shipped by the end of 2015, according to Deloitte.Like so many others, the space is a real game of thrones as major incumbents such as Google, Microsoft, Apple, IBM, Cisco, and Intel, along with challengers like Belkin (WeMo) and others, vie to create platforms and deploy devices that connect through those platforms. And hardly a day passes without a home or consumer IoT device launching on Kickstarter or Indiegogo, generally without connectivity into anything but your phone.

Read More

Events