Security Challenges for the Industrial Internet of Things (IIoT)

In an industrial environment, everything that connects to the internet is a security risk. Information Technology (IT) professionals are acutely aware of this; however, Operational Technology professionals may think IT is being a bit paranoid. The fact is, less than two years ago, millions of IoT devices were compromised, allowing the largest DDoS attack in the history of the internet to be launched, causing widespread outages across the US.

Spotlight

Xilinx

Xilinx is the leading provider of All Programmable FPGAs, SoCs, MPSoCs and 3D ICs. Xilinx uniquely enables applications that are both software defined, yet hardware optimized – powering industry advancements in Cloud Computing, SDN/NFV, Video/Vision, Industrial IoT and 5G Wireless.

OTHER ARTICLES
Enterprise Iot

Top 10 IoT trends and predictions to look out in 2022

Article | May 11, 2023

The biggest IoT trends are likely to manifest in 2022 and beyond. 1. BLOCKCHAIN The term blockchain is a new concept and is known as a single registry; agreed and distributed in several nodes of a network that will continue in force in the coming years in various activities. 2. MOBILE COMMERCE OR M-COMMERCE It is part of electronic commerce that is carried out exclusively through mobile devices such as smartphones or tablets. The processes will be specialized. With mobile commerce comes the need for device management. Device management is a vital step to ensure security is promptly implemented.Mobile Device Management (MDM) solutions, also known as MDM, offer brilliant benefits across all areas. 3. TELEWORK AND DISTANCE EDUCATION Academic and work activities that are carried out remotely, preferably from home, will continue to be applied in a fixed or hybrid way. A smart device(s) can be used from a remote location and therefore enable workers to more effectively manage time. 4. ROBOTIC PROCESSING AUTOMATIZATION It is all technology-oriented to the use of software, with the aim of reducing human intervention in the use of computer applications, especially in repetitive tasks. This reduces the risk of human error and will also cut down management costs. 5. ARTIFICIAL INTELLIGENCE It is the combination of algorithms proposed with the purpose of creating machines that have the same capabilities as humans, with the aim of doing a variety of tasks. If we decide to develop an Artificial Intelligence that has greater intelligence, responsibility and scalability, we can make the most of learning algorithms and interpretation systems. In this way, we are able to create value more quickly and with a greater business impact. It is essential to have new techniques that achieve smarter AI solutions, that require less data, with greater ethical responsibility and more resilience.” Gartner 6. DIGITAL TRANSFORMATION Digital transformation is the change associated with the application of digital technologies in all aspects of human society, and especially in organizations. Accelerating business digital transformation requires entrepreneurs to step back and re-evaluate their plans. It’s about aligning the customer experience strategy with coordinated and detailed digitization plans of what needs to be done, by whom and when. To do this, having precisely identified the customer journey of your digital customer allows you a complete approach, for which tools such as the customer journey map is key. 7. FINTECH It is a nascent industry in which companies use technology to provide financial services in an efficient, agile, comfortable and reliable way. They aim to expand bank penetration. 8. DATA ANALYSIS It is the process by which raw data is analyzed in order to answer questions and reach practical conclusions that support an organization’s decision-making. Using predictive models and AI tools, we can run simulations that are based on real scenarios and information. Thanks to this, we obtain data on contexts that would be difficult, very expensive or impossible to test in physical environments. Big data is big money. 9. SOFTWARE DEVELOPMENT Software development is generally considered part of the agile family of approaches, and is often used in combination with one or more other methods. Softwareon a smart device can also be upgraded to include better connectivity. In addition to its development, there is likely to be more outsourcing also. 10. ADVANCED MANUFACTURING OR INDUSTRY 4.0 It refers to a new business model in which the interconnection of integrated ICT systems both with each other and with the internet is key. The adoption of Industry 4.0 technologies and the training of personnel will be the greatest opportunities that industries, companies and governments will have in the next decade. Therefore, 2022 represents the next step to embrace technological transformation as an indispensable element for competitiveness, resilience, and development.

Read More
Security, IoT Security

5 Things to Know About the IoT Platforms Market

Article | July 13, 2023

5 years ago, when we forecasted that the IoT platforms market would have a 5-year compound annual growth rate (CAGR) of 35%, we wondered if our growth projection was unrealistically high. 5 years later, it has become apparent that the forecast was actually too low. The IoT Platforms market between 2015 and 2020 grew to be $800 million larger than we forecasted back in early 2016, resulting in a staggering 48% CAGR. Comparing what we “knew” back in 2016 to what we know today provides some clues as to why the market exceeded expectations so much. 5 years ago, no one really knew what an IoT platform was, let alone how big the market would be, which business models would work, how architectures would evolve, and which companies/industries would adopt them. The only thing that was “known” was that the IoT platforms market was a billion dollar “blue ocean” opportunity ready to be captured by innovative companies.

Read More
IoT Security

What Impact Will Data Management Have on Your IoT Strategy?

Article | June 27, 2023

For businesses to grow, they must be armed with the right technology and implement the right strategies to get a high return on their investments. With an IoT strategy, you can successfully make sense of the high volumes of data generated. IoT is about having devices with sensors communicate with other devices over the internet and share real-time data or parameters to maintain healthy system processes. Sharing and transferring data in real time over the cloud creates a lot of data that needs to be carefully managed. Not having a streamlined method to control and manage the volume of data to capture, send, transmit, and receive over the cloud poses many space constraints as the data piles up quickly. Furthermore, deciding what data to keep and what to discard, how long you need the data, and for what purpose are all critical. Some standard IoT devices include sensors, lights, alarms, and cameras that a smartphone can control. Learn about the importance of data management in establishing an IoT framework below. The Top Reason for Establishing an IoT Framework Needs Data Management Learning from past data trends to make future decisions in an IoT framework is critical. Data management acts as a layer between the IoT devices generating the data and the software accessing the data for analysis and services. It helps review, analyze, and navigate the massive amounts of structured and unstructured data. Defining which actions trigger responses to create data in your process is necessary to monitor your product and services and to keep your customers satisfied. In an IoT framework, managing the large amounts of data that are generated and collected means learning from the past and predicting what will happen in the future. Why is Data Management for the IoT Framework Crucial for Medium and Large Enterprises? Creating a better product is essential to add more value to your product offerings and avoid recalls, keeping your brand reputation at stake. The more data, the deeper the analysis, and the more refined the product, the greater the need to manage large amounts of data efficiently. The future of IoT data management is promising when it comes to improving all aspects of your business processes, mainly controlling the automation and manufacturing processes and software triggers. Check out the in-depth benefits of data management in IoT. Data management in IoT helps conduct a field test of your IoT products before deployment. Improve the uptime of your business production lines and equipment. Perform seamless decision-making for planning, scheduling, and execution systems to meet the changing customer and market demands using accurate and current data. Data management helps efficiently deploy IoT solutions such as enterprise resource planning (ERP), enterprise asset management (EAM), and manufacturing execution systems (MES) in manufacturing businesses. Data management helps remote monitoring of automation systems and robotic systems in industrial IoT needs current data and management. Improve production flexibility and responsiveness by welcoming smart manufacturing using IoT data management. When it comes to the data management of IoT devices, different types of data management systems take care of structured and unstructured data. 8 Data Management Systems for Your Enterprise IoT Devices IoT device management means registering, organizing, monitoring, and remotely managing IoT-connected devices at scale. Various cloud architectures with different data management systems help with efficient IoT device management. In addition, equipment data, sub-meter data, and environmental data help track the performance of your IoT devices through IoT data collection. Let's find out how data management systems for IoT devices would help develop an IoT strategy for your large enterprise. IoT gateway device management involves many steps in keeping your operations healthy and maximizing uptime. These are provisioning, authentication, configuration, control, monitoring, diagnostics, software updates, and maintenance. In addition, data management systems aim to make data available for analysis in the long term. The different data management systems are as under: Querying Production Collection Aggression/Fusion Delivery Pre-processing Storage, updating and archiving Processing or analysis. These data management systems capture, organize, store, retrieve, and analyze data when required. Sorting out the data management in IoT will initiate your internet of things database scalability. An IoT data lifecycle is built around the data management systems in the data flow, which acts as guidelines or checkpoints for a smooth data flow across your IoT platform. Let us unfold them below. Seven Guidelines for Cost-Effective IoT Data Management • Querying: Accessing and retrieving data for temporary monitoring. For example, you could ask IoT devices or sensors for data in real time to learn more about trends and patterns. • Production: Sensing and transferring data by the "things" or IoT devices in an IoT framework is the data production phase. Pushing the data to the cloud network and the IoT database servers and reporting it to the interested parties. This rich data has different formats such as audio, video, or image content, and is time-stamped and geo-stamped. • Collection: Collecting and retrieving data for a predefined time interval and sharing it with the governing components within the gateways is a part of the collection. Filtering out valuable data and compressing it accordingly helps seamless data transfer. It is also a part of data collection. • Aggression or fusion: Part of the aggression is real-time data transmission across the network to increase the rate of data streaming over the limited bandwidth. It pulls together information from different points of contact and reduces the amount of information that needs to be stored and sent. • Delivery: Collating the data from multiple touch points across the IoT framework and summing it up for the final responses is a part of the data delivery management system. Making data ready for permanent data storage is also a part of it. • Preprocessing: Removing redundant, missing, and incomplete data and making all the data unified is a part of preprocessing. Data cleaning is also one of the preprocessing methods applied to data mining. • Storage, Update, and Archiving: Storing data in an organized way for long-term offline usage or big-data systems is a part of the storage data management system. It can be decentralized or centralized as per the required capabilities. • Processing or Analysis: Retrieval of stored packets of data accessed for an efficient analysis is a part of data processing or analysis in a data management system. Whenever handling large amounts of data, an efficient data management system will solve numerous problems concerning your IoT strategy, as discussed above. Find out exactly what can keep you from implementing IoT. 5 Growth Challenges in Data Management for IoT Technology High Initial and Ongoing costs: Upgrading the hardware and software infrastructure that is already in place, hiring IoT-trained staff, and building an IoT infrastructure will all require upfront and ongoing costs. Vulnerability: Your IoT security strategy is a critical aspect of your IoT platform strategy. Multiple data points for structured and unstructured data captured, transmitted, stored, and retrieved by software come with security risks. Procuring Quality Hardware: Finding compatible hardware for your requirements and building an infrastructure around them can take a while regarding decision-making for scalability. In addition, hardware must remain supportive of the quick adoption of future software innovations. Installation and Upkeep of Hardware Infrastructure: Setting up a complex IoT strategy with the implementation of IoT data management, infrastructure, security, and more takes time and expertise. One of the other big worries is keeping the hardware infrastructure in good shape so that security can't be broken. Constraints on Scalability and Agility: The humungous IoT data traffic poses a severe concern for appropriate control of the data storage, retrieval, analysis, monitoring, and everything aligned with IoT data management. Also, the fact that IoT data doesn't last as long as other types of data is a risk to the way data flows and is collected. Now, let us figure out how to implement IoT that aligns with your business objectives. How to Implement IoT in Line with Your Business Goals A complete analysis of your immediate and long-term business objectives is critical as it helps decide which data to keep and which to discard after how much time. Every byte of data you hold and analyze comes with a cost for storage, retrieval, and security, which can be a barrier to implementing IoT for your business. Identifying IoT data collection helps you align your IoT implementation strategy with your business objectives. Here are a few ways to address your implementation of IoT. Consider the use cases of IoT data management as per the processes involved in your business. Implement security protocols for encryption and restricted access as per the type of business data. Organize training for the existing workforce and hire skilled professionals in IoT. Understand your business's data requirements, including the data collection process. Allow enough budget for IoT infrastructure and resources. Consider the design and development of the product as per the customer's behavior. Consider the impact of the environmental conditions affecting your business. Measure real-time performance metrics using a suitable IoT sensor to streamline your process. Take automated decisions with the help of AI once IoT sensors recognize the performance gaps. Choose the right IoT platform that defines how you communicate and handle data. Understand that IoT implementation is a complex process and needs commitment. Collect only the important data and statistics for a smooth workflow and to lower the cost of putting IoT into place. Taking into account where your storage and production lines are located, choose the best ways to gather, organize, and analyze your data. Use cold path analytics for the long term and hot path analytics for real-time data storage. Building infrastructure with scalability in mind will help small businesses grab market share quickly and efficiently. As a result, medium-sized enterprises will find prominence in their industry. Using data visualization in business intelligence allows for rapid optimization of your IoT devices and for controlling data management costs in the long run without negatively impacting performance. Explore more about IoT data visualization down below. Role of Data Visualization in IoT for Business Intelligence With IoT data visualization, you can optimize business processes by applying visualization business intelligence to get your business ready to scale. Discover the role of data visualization in your IoT strategy. Make sense of the data you've collected or saved. Patterns and trends should be recognized. Check the data for inconsistencies and errors. The output should then be visualized over time for analysis and monitoring. IoT infrastructure and devices improve performance and streamline the IoT data flow. Analyze real-time data correlations across multiple business verticals using the IoT communication platform. Make future decisions based on the data captured in the past. Get actionable insights on customer behavior and Identify the factors impacting your business. Once you identify the gaps in business processes, you can make changes to the process and further improvise. Creating an optimized workflow and detecting errors and faults in a process early are the primary goals of data management in an IoT strategy. Tackling vulnerabilities in data security and data redundancy helps the cost-effective implementation of IoT for small businesses, opening avenues for scalability. With IoT data management, you can also optimize your products to make customers happier and get a bigger share of the market, which is great for your business's growth. Summarizing With secure access control, encryption, software updates, endpoint security, and communication protocols in place, the relentless power of data visualization for analyzing and monitoring the captured data has proved to be unmatched. Bringing resilience and giving a rapid boost to the scalability of your medium and large enterprises is now becoming a norm with organized IoT data management. FAQs: • What is the most significant benefit of IoT? IoT helps devices or sensors report real-time data for smooth interconnected production operations. In addition, IoT keeps healthy functions throughout and minimizes the turnaround time for troubleshooting and maintenance. • What are the three types of IoT? Depending upon the needs from time to time, the three types of IoT include short form, medium form, and long form. The short form meets immediate needs, the medium form meets future needs, and the long form keeps the system running smoothly. • How does data analytics help IoT? Effective process optimization is possible by analyzing the data generated in an IoT framework. It helps boost efficiency, and connectivity, cut costs and unlock scalability.

Read More

How 5G Will Unlock Unseen Opportunities in Industrial IoT

Article | April 27, 2020

Manufacturing industry or the Industrial Internet of Things has been one of the driving verticals for development of 5G technologies. Wide 5G deployement for Industrial IoT has long been in the pipeline but we might expect it to be a reality very soon. The true success of 5G depends on the verticals as trends suggest that that Industrial IoT alone will triple the number of needed base stations globally. And many verticals will need efficient wireless connectivity to become successful. 5G has features that are specifically designed to address the needs of vertical sectors, such as network slicing and URLLC. The ultra-reliable low latency communications and massive machine type communications required by the IIoT will soon be realized. Table of Contents: How Will 5G Impact Industrial IoT? 5G Accelerations for IIoT Industrial 5G How Will 5G Benefit Industrial IoT? IoT is a B2B application and users just want to get actionable data from their sensors and not worry about whether it’s old data or unreliable data. I think 5G changes this dynamic significantly over the long term by standardizing and simplifying the experience and interactions, and possibly engaging more of the industry to help solve IoT’s problems but also improve the total experience. - Anshel Sag, analyst at Moor Insights & Strategy • Data-Transfer Speeds Any IoT is said to be commercially successful depending on how fast it can set up communications with other IoT devices, software based websites or applications, phones, and tablets. 5G promises exactly all of this with significant increase in transfer speeds. 5G is 10x faster than its LTE counterparts and allows IoT devices to communicate and share data faster than ever. All IoT devices will benefit from the faster speed of 5G with reduced lag and improved sending and receiving of data and notifications between connected devices. • Greater Network Reliability 5G networks also offer more reliable and stable connection which is extremely important for any IoT including devices like locks, security cameras and monitoring systems that depend on real-time updates. With reliable connectivity consumers will be the greater beneficiary. It is however, imperative for manufactures to trust and invest in 5G compatible devices to reap the benefits of high-speed connectivity, very low latency, and a greater coverage that will arrive with the next generation network. READ MORE:How Will the Emergence of 5G Affect Federated Learning? 5G Accelerations for IIoT • Diversity in Industrial IoT The opportunities that industrial IoT bring with is varied and its used cases span the spectrum from indoor to outdoor, less demanding to mission-critical, data rate from dozens of bps to gbps, device motion from fixed to mobility, and power source from button battery to high voltage. Predictive maintenance, smart metering, asset tracking, and fleet management are some of the commonly known opportunities for IIoT, which be extended further by 5G through continued diversity and expansion. • 5G Inspires Untapped Frontiers Industrial IoT application areas such as mobile robot control in production automation and autonomous vehicles in open pit mining require wide mobility, low latency and mission-critical reliability. They rely on wireless access at 50ms to 1ms latency and service reliability from 5 nines to 6 nines. Though 4G/LTE has attempted to address these areas of IIoT application it has failed due to unsatisfactory performance. With ultra-reliable and low latency connection, 5G will take industrial IoT to unconquered spaces. • Managing the Enterprise 5G Network Typically, enterprise IT is responding to the business demand from Operational Technology (OT) and mandates security, integration, visibility, control, and compatibility. In this scenario, 5G is not about “what,” but about “how”. IT needs to consider the right approach to bring 5G to the enterprise and decide whether to co-manage with the service provider (SP) or self-manage. The experience of IT in managing Industrial Ethernet and Wi-Fi may not hold when it comes to 5G. IT will likely require OT’s partnership to address complexity, security, integration, and other new challenges that 5G presents. Industrial 5G The potential for industrial 5G huge as it enables whole new business models. Industrial IoT has a core requirement of the ability to connect sensors, devices, software applications, production process, workers and consumers. The connectivity requires to be seamless vertical and horizontal integrations of all layers of automation pyramids that increases operational efficiency of the plant floor and the supply chain by optimal use of data, information and analytics. This can be improved by five key elements: • Improved Connectivity • Availability • Low Latency • Flexibility • Speed Industrial 5G will impact these areas of the manufacturing industry to guide the success of Industrial IoT. Industrial 5G will play a key role in helping industrial users achieve the goals of Industrial IoT. 5G offers wireless communications services with reduced latency, increased connection density, and improved flexibility compared to the current 4G generation. 5G technology has a theoretical downlink peak speed of 20 Gbps (gigabits per second), which is about 20 times faster than the current generation. The key is to start building IoT devices with broadly adopted operating systems, built-in security all the way down to the silicon, verifiable and updatable firmware, and mainstream application development tooling. - Anshel Sag, analyst at Moor Insights & Strategy The push and pull in achieving 5G success in IoT will be there until technology providers and end users work together to set up a consensus on standardization. The success will also depend on best-of-breed approach allowing the introduction of new technology over the lifecycle. Software and system integration will also be important attributes to a successful 5G deployment. READ MORE:How Will IoT Revolutionize Pharmaceutical Manufacturing?

Read More

Spotlight

Xilinx

Xilinx is the leading provider of All Programmable FPGAs, SoCs, MPSoCs and 3D ICs. Xilinx uniquely enables applications that are both software defined, yet hardware optimized – powering industry advancements in Cloud Computing, SDN/NFV, Video/Vision, Industrial IoT and 5G Wireless.

Related News

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Ceva Extends its Connect IP Portfolio with Wi-Fi 7 Platform for High-End Consumer and Industrial IoT

Ceva, Inc. | January 05, 2024

Ceva, Inc. (NASDAQ: Ceva), the leading licensor of silicon and software IP that enables Smart Edge devices to connect, sense and infer data more reliably and efficiently, today announced the general release of its next generation RivieraWaves Wi-Fi 7 IP platform, further expanding its widely-licensed portfolio of connectivity IP, targeting high-end consumer and industrial applications including gateways, TVs, set-top-boxes, streaming media devices, AR/VR headsets, personal computing and smartphones. The RivieraWaves Wi-Fi 7 IP leverages all the latest advanced features of the IEEE 802.11be standard to deliver a premium high performance, cost- and power-optimized Wi-Fi solution for integration into the next wave of Wi-Fi Access Point (AP) and Station (STA) products. According to global technology intelligence firm ABI Research, annual Wi-Fi enabled chipset shipments will exceed 5.1 billion by 2028, with more than 1.7 billion of these chipsets supporting the Wi-Fi 7 standard. As Wi-Fi enabled device shipments continue to grow, increasing numbers of semiconductor companies and OEMs are choosing to integrate Wi-Fi connectivity into their chip designs, and need access to high quality Wi-Fi IP to reduce the development costs and risks. Spanning Wi-Fi 4/5/6 over the past decade, Ceva has already established a considerable leadership position in Wi-Fi IP licensing, with more than 40 licensees for its RivieraWaves Wi-Fi 6 IP family, serving a wide range of end markets and applications, from end points to access points, across the IoT sphere. Expanding on this leadership position, Ceva's RivieraWaves Wi-Fi 7 IP provides a unique, comprehensive 802.11be MAC and PHY solution for integration into the next generation of Wi-Fi SoC products. Andrew Zignani, Senior Research Director, ABI Research, commented: "Ceva's wireless connectivity IPs play an integral role in the proliferation of connectivity standards in the broad IoT markets, as is evident from their customer's success in shipping more than 1 billion connectivity chips annually. With the introduction of their RivieraWaves Wi-Fi 7 IP platforms, semiconductor companies and OEMs have a trusted partner to develop differentiated, high-performance Wi-Fi 7 chipsets for their connectivity roadmaps, with lower risk and a lower cost of ownership." Tal Shalev, Vice President and General Manager of the Wireless IoT BU at Ceva, stated: "The relentless expansion of Wi-Fi usage has pushed the Wi-Fi 7 standard to offer enhanced data throughput, improved latency and support more spectrum in the face of mounting network congestion. Achieving this requires highly complex, cutting-edge functionalities like 4K QAM modulation, Multi Link Operation and Multi Resource Unit to optimize link efficiency across the available bands. Our RivieraWaves Wi-Fi 7 IP platform incorporates all the features of this latest-generation, wireless standard, dramatically simplifying development and time-to-market for companies looking to add Wi-Fi 7 connectivity to their products." Wi-Fi 7's 4K QAM modulation scheme is a substantial increase on the previous 1K QAM of Wi-Fi 6, while Multi Link Operation (MLO) introduces dynamic channel aggregation, seamlessly combining heterogenous channels from the same or different bands to navigate interference and boost throughput. Similarly, Multi Resource Units (MRU) enables the creation of larger channel bandwidths by intelligently stitching together punctured or disjointed Resource Units within the same band. The outcome is not only a remarkable up to 5 times increase in raw speeds but also significantly reduced latency, thanks to diminished contentions and retries. About Ceva, Inc. At Ceva, we are passionate about bringing new levels of innovation to the smart edge. Our wireless communications, sensing and Edge AI technologies are at the heart of some of today's most advanced smart edge products. From Bluetooth connectivity, Wi-Fi, UWB and 5G platform IP for ubiquitous, robust communications, to scalable Edge AI NPU IPs, sensor fusion processors and embedded application software that make devices smarter, we have the broadest portfolio of IP to connect, sense and infer data more reliably and efficiently. We deliver differentiated solutions that combine outstanding performance at ultra-low power within a very small silicon footprint. Our goal is simple – to deliver the silicon and software IP to enable a smarter, safer, and more interconnected world. This philosophy is in practice today, with Ceva powering more than 17 billion of the world's most innovative smart edge products from AI-infused smartwatches, IoT devices and wearables to autonomous vehicles and 5G mobile networks. Our headquarters are in Rockville, Maryland with a global customer base supported by operations worldwide. Our employees are among the leading experts in their areas of specialty, consistently solving the most complex design challenges, enabling our customers to bring innovative smart edge products to market.

Read More

Industrial IoT

Energous and InPlay Launch Low Maintenance Wireless Sensors for IoT industrial Applications

Business Wire | September 27, 2023

Energous Corporation (NASDAQ: WATT), an industry leader in RF-based wireless power network solutions, has partnered with InPlay Inc., a fabless semiconductor company dedicated to engineering advanced low-power wireless communication technologies for the Industrial IoT market, to demonstrate a battery-free temperature and humidity IoT sensor solution. This innovation harnesses the strengths of Energous' PowerBridge technology and InPlay's cutting-edge Bluetooth low-energy beacon system. This solution has the potential to expand into multiple markets within the Industrial IoT ecosystem that Energous is currently focusing on. This collaborative endeavor aims to offer these industries a reliable, cost-effective, and energy-efficient sensor solution. As IoT expands, particularly within industrial applications, the need to retrofit costly sensor solutions becomes evident. By eliminating cables, removing disposable batteries, and cutting down maintenance costs, we can significantly reduce overall expenses and help deploy sensors at a much larger scale, stated Cesar Johnston, CEO of Energous. Our PowerBridge technology delivers consistent power to multiple devices simultaneously, offering greater design flexibility, waterproofing capabilities, and alleviating power-related challenges. “Energous PowerBridge technology enables wireless power transmission with minimal size and maximum power and cost efficiency,” said Jason Wu, CEO of InPlay. “Our InPlay NanoBeacon SoC solution benefits wireless sensors customers by providing ultra-low-cost, low-power and a programming free design where manufacturers are able to cut down on development costs and achieve a shorter time to market.” Energous and InPlay will be at the Wireless IoT Tomorrow in Wiesbaden (near Frankfurt airport), Germany from October 18-19, 2023. To schedule a demo at the event, please visit https://energous.com/schedule-a-demo/ or stop by the Energous booth #1 or the InPlay booth #6. About Energous Corporation Energous Corporation (NASDAQ: WATT) has been pioneering wireless charging over distance technology since 2012. Today, as the global leader in wireless charging over distance, its networks are safely and seamlessly powering its customers’ RF-based systems in a variety of industries, including retail, industrial, healthcare and more. Its total network solution is designed to support a variety of applications, including inventory and asset tracking, smart manufacturing, electronic shelf labels, IoT sensors, digital supply chain management, inventory management, loss prevention, patient/people tracking and sustainability initiatives. The number of industries and applications it serves is rapidly growing as it works to support the next generation of the IoT ecosystem.

Read More

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Ceva Extends its Connect IP Portfolio with Wi-Fi 7 Platform for High-End Consumer and Industrial IoT

Ceva, Inc. | January 05, 2024

Ceva, Inc. (NASDAQ: Ceva), the leading licensor of silicon and software IP that enables Smart Edge devices to connect, sense and infer data more reliably and efficiently, today announced the general release of its next generation RivieraWaves Wi-Fi 7 IP platform, further expanding its widely-licensed portfolio of connectivity IP, targeting high-end consumer and industrial applications including gateways, TVs, set-top-boxes, streaming media devices, AR/VR headsets, personal computing and smartphones. The RivieraWaves Wi-Fi 7 IP leverages all the latest advanced features of the IEEE 802.11be standard to deliver a premium high performance, cost- and power-optimized Wi-Fi solution for integration into the next wave of Wi-Fi Access Point (AP) and Station (STA) products. According to global technology intelligence firm ABI Research, annual Wi-Fi enabled chipset shipments will exceed 5.1 billion by 2028, with more than 1.7 billion of these chipsets supporting the Wi-Fi 7 standard. As Wi-Fi enabled device shipments continue to grow, increasing numbers of semiconductor companies and OEMs are choosing to integrate Wi-Fi connectivity into their chip designs, and need access to high quality Wi-Fi IP to reduce the development costs and risks. Spanning Wi-Fi 4/5/6 over the past decade, Ceva has already established a considerable leadership position in Wi-Fi IP licensing, with more than 40 licensees for its RivieraWaves Wi-Fi 6 IP family, serving a wide range of end markets and applications, from end points to access points, across the IoT sphere. Expanding on this leadership position, Ceva's RivieraWaves Wi-Fi 7 IP provides a unique, comprehensive 802.11be MAC and PHY solution for integration into the next generation of Wi-Fi SoC products. Andrew Zignani, Senior Research Director, ABI Research, commented: "Ceva's wireless connectivity IPs play an integral role in the proliferation of connectivity standards in the broad IoT markets, as is evident from their customer's success in shipping more than 1 billion connectivity chips annually. With the introduction of their RivieraWaves Wi-Fi 7 IP platforms, semiconductor companies and OEMs have a trusted partner to develop differentiated, high-performance Wi-Fi 7 chipsets for their connectivity roadmaps, with lower risk and a lower cost of ownership." Tal Shalev, Vice President and General Manager of the Wireless IoT BU at Ceva, stated: "The relentless expansion of Wi-Fi usage has pushed the Wi-Fi 7 standard to offer enhanced data throughput, improved latency and support more spectrum in the face of mounting network congestion. Achieving this requires highly complex, cutting-edge functionalities like 4K QAM modulation, Multi Link Operation and Multi Resource Unit to optimize link efficiency across the available bands. Our RivieraWaves Wi-Fi 7 IP platform incorporates all the features of this latest-generation, wireless standard, dramatically simplifying development and time-to-market for companies looking to add Wi-Fi 7 connectivity to their products." Wi-Fi 7's 4K QAM modulation scheme is a substantial increase on the previous 1K QAM of Wi-Fi 6, while Multi Link Operation (MLO) introduces dynamic channel aggregation, seamlessly combining heterogenous channels from the same or different bands to navigate interference and boost throughput. Similarly, Multi Resource Units (MRU) enables the creation of larger channel bandwidths by intelligently stitching together punctured or disjointed Resource Units within the same band. The outcome is not only a remarkable up to 5 times increase in raw speeds but also significantly reduced latency, thanks to diminished contentions and retries. About Ceva, Inc. At Ceva, we are passionate about bringing new levels of innovation to the smart edge. Our wireless communications, sensing and Edge AI technologies are at the heart of some of today's most advanced smart edge products. From Bluetooth connectivity, Wi-Fi, UWB and 5G platform IP for ubiquitous, robust communications, to scalable Edge AI NPU IPs, sensor fusion processors and embedded application software that make devices smarter, we have the broadest portfolio of IP to connect, sense and infer data more reliably and efficiently. We deliver differentiated solutions that combine outstanding performance at ultra-low power within a very small silicon footprint. Our goal is simple – to deliver the silicon and software IP to enable a smarter, safer, and more interconnected world. This philosophy is in practice today, with Ceva powering more than 17 billion of the world's most innovative smart edge products from AI-infused smartwatches, IoT devices and wearables to autonomous vehicles and 5G mobile networks. Our headquarters are in Rockville, Maryland with a global customer base supported by operations worldwide. Our employees are among the leading experts in their areas of specialty, consistently solving the most complex design challenges, enabling our customers to bring innovative smart edge products to market.

Read More

Industrial IoT

Energous and InPlay Launch Low Maintenance Wireless Sensors for IoT industrial Applications

Business Wire | September 27, 2023

Energous Corporation (NASDAQ: WATT), an industry leader in RF-based wireless power network solutions, has partnered with InPlay Inc., a fabless semiconductor company dedicated to engineering advanced low-power wireless communication technologies for the Industrial IoT market, to demonstrate a battery-free temperature and humidity IoT sensor solution. This innovation harnesses the strengths of Energous' PowerBridge technology and InPlay's cutting-edge Bluetooth low-energy beacon system. This solution has the potential to expand into multiple markets within the Industrial IoT ecosystem that Energous is currently focusing on. This collaborative endeavor aims to offer these industries a reliable, cost-effective, and energy-efficient sensor solution. As IoT expands, particularly within industrial applications, the need to retrofit costly sensor solutions becomes evident. By eliminating cables, removing disposable batteries, and cutting down maintenance costs, we can significantly reduce overall expenses and help deploy sensors at a much larger scale, stated Cesar Johnston, CEO of Energous. Our PowerBridge technology delivers consistent power to multiple devices simultaneously, offering greater design flexibility, waterproofing capabilities, and alleviating power-related challenges. “Energous PowerBridge technology enables wireless power transmission with minimal size and maximum power and cost efficiency,” said Jason Wu, CEO of InPlay. “Our InPlay NanoBeacon SoC solution benefits wireless sensors customers by providing ultra-low-cost, low-power and a programming free design where manufacturers are able to cut down on development costs and achieve a shorter time to market.” Energous and InPlay will be at the Wireless IoT Tomorrow in Wiesbaden (near Frankfurt airport), Germany from October 18-19, 2023. To schedule a demo at the event, please visit https://energous.com/schedule-a-demo/ or stop by the Energous booth #1 or the InPlay booth #6. About Energous Corporation Energous Corporation (NASDAQ: WATT) has been pioneering wireless charging over distance technology since 2012. Today, as the global leader in wireless charging over distance, its networks are safely and seamlessly powering its customers’ RF-based systems in a variety of industries, including retail, industrial, healthcare and more. Its total network solution is designed to support a variety of applications, including inventory and asset tracking, smart manufacturing, electronic shelf labels, IoT sensors, digital supply chain management, inventory management, loss prevention, patient/people tracking and sustainability initiatives. The number of industries and applications it serves is rapidly growing as it works to support the next generation of the IoT ecosystem.

Read More

Events