Startup JetStream Promises Painless Cross-Cloud Workload Migration

New company's Cross-Cloud Platform gives cloud service providers and Fortune 500 enterprises an alternative way to provide workload migration, resource elasticity and disaster-recovery-as-a-service across multi-cloud and multi-data center infrastructures. This is becoming a trend: Once again, data migration and integration news is at the top of the tech business lineup. JetStream Software, which on April 3 launched both itself and a next-generation cross-cloud data management platform, joins existing traffic on the data migration and integration virtual highway. Its new JetStream Cross-Cloud Platform gives cloud service providers and Fortune 500 enterprises an alternative way to provide workload migration, resource elasticity and disaster-recovery-as-a-service continuity across multi-cloud and multi-data center infrastructures.

Spotlight

T-Systems

Like no other company in the world, T-Systems provides ICT solutions from a single source. As Deutsche Telekom's business and corporate customer arm, we shape the connected future of business and society, set trends with innovative ICT solutions, and create the digital world of tomorrow. Digitization does not focus on the size of a company and neither do our 47,800 employees in over 20 countries: We support large multi-national corporations and medium-sized companies on the path to connected work, production, and sales across all sectors worldwide. In addition to services from the cloud, the range of services centers around M2M, security solutions, complementary mobile communications and fixed network products, and solutions for virtual collaboration and IT platforms, all of which form the basis for our customers' digital business models.

OTHER ARTICLES
Security, IoT Security

Top 10 IoT trends and predictions to look out in 2022

Article | July 13, 2023

The biggest IoT trends are likely to manifest in 2022 and beyond. 1. BLOCKCHAIN The term blockchain is a new concept and is known as a single registry; agreed and distributed in several nodes of a network that will continue in force in the coming years in various activities. 2. MOBILE COMMERCE OR M-COMMERCE It is part of electronic commerce that is carried out exclusively through mobile devices such as smartphones or tablets. The processes will be specialized. With mobile commerce comes the need for device management. Device management is a vital step to ensure security is promptly implemented.Mobile Device Management (MDM) solutions, also known as MDM, offer brilliant benefits across all areas. 3. TELEWORK AND DISTANCE EDUCATION Academic and work activities that are carried out remotely, preferably from home, will continue to be applied in a fixed or hybrid way. A smart device(s) can be used from a remote location and therefore enable workers to more effectively manage time. 4. ROBOTIC PROCESSING AUTOMATIZATION It is all technology-oriented to the use of software, with the aim of reducing human intervention in the use of computer applications, especially in repetitive tasks. This reduces the risk of human error and will also cut down management costs. 5. ARTIFICIAL INTELLIGENCE It is the combination of algorithms proposed with the purpose of creating machines that have the same capabilities as humans, with the aim of doing a variety of tasks. If we decide to develop an Artificial Intelligence that has greater intelligence, responsibility and scalability, we can make the most of learning algorithms and interpretation systems. In this way, we are able to create value more quickly and with a greater business impact. It is essential to have new techniques that achieve smarter AI solutions, that require less data, with greater ethical responsibility and more resilience.” Gartner 6. DIGITAL TRANSFORMATION Digital transformation is the change associated with the application of digital technologies in all aspects of human society, and especially in organizations. Accelerating business digital transformation requires entrepreneurs to step back and re-evaluate their plans. It’s about aligning the customer experience strategy with coordinated and detailed digitization plans of what needs to be done, by whom and when. To do this, having precisely identified the customer journey of your digital customer allows you a complete approach, for which tools such as the customer journey map is key. 7. FINTECH It is a nascent industry in which companies use technology to provide financial services in an efficient, agile, comfortable and reliable way. They aim to expand bank penetration. 8. DATA ANALYSIS It is the process by which raw data is analyzed in order to answer questions and reach practical conclusions that support an organization’s decision-making. Using predictive models and AI tools, we can run simulations that are based on real scenarios and information. Thanks to this, we obtain data on contexts that would be difficult, very expensive or impossible to test in physical environments. Big data is big money. 9. SOFTWARE DEVELOPMENT Software development is generally considered part of the agile family of approaches, and is often used in combination with one or more other methods. Softwareon a smart device can also be upgraded to include better connectivity. In addition to its development, there is likely to be more outsourcing also. 10. ADVANCED MANUFACTURING OR INDUSTRY 4.0 It refers to a new business model in which the interconnection of integrated ICT systems both with each other and with the internet is key. The adoption of Industry 4.0 technologies and the training of personnel will be the greatest opportunities that industries, companies and governments will have in the next decade. Therefore, 2022 represents the next step to embrace technological transformation as an indispensable element for competitiveness, resilience, and development.

Read More
IoT Security

Top Technologies in IoT Network Security for Network Resilience

Article | July 17, 2023

Building resilient IoT networks: Exploring the top technologies for enhancing IoT security and protecting as well as safeguarding against evolving cyber threats in the interconnected era of Industry 4.0. Contents 1. What is Network Resilience and Why is it Needed? 1.1 Continuous Operation 1.2 Mitigating Security Threats 1.3 Data Protection 1.4 System Availability 1.5 Risk Management 1.6 Regulatory Compliance 2. Factors to Consider for Network Resilience 3. Top Trends in IoT Security 3.1 Zero Trust and AI 3.2 Supply Chain Security 3.3 Network Segmentation and Segregation 3.4 Over-the-Air (OTA) Updates 3.5 Device Authentication and Authorization 3.6 Software-defined Networking (SDN) Security 3.7 Identity and Access Management (IAM) 4. Conclusion 1. What is Network Resilience and Why is it Needed? Network resilience refers to the ability of an IoT network to withstand and recover from disruptions, attacks, or failures while maintaining its essential functions. It involves implementing measures to ensure the network remains available, reliable, and secure, even during security threats or unexpected events. Ensuring network resilience is a critical aspect of IoT network security. Network resilience refers to the ability of an IoT network to withstand and recover from disruptions, attacks, or failures while maintaining its essential functions. Ensuring network resilience in IoT network security is crucial for the following reasons: 1.1 Continuous Operation IoT networks often support critical applications and services that require uninterrupted operation. Network resilience ensures that these applications can continue functioning even during disruptions, such as network failures or security incidents. It minimizes downtime and ensures business continuity. 1.2 Mitigating Security Threats IoT networks are susceptible to various cybersecurity threats, including malware, unauthorized access, or Distributed Denial of Service (DDoS) attacks. Network resilience measures help mitigate these threats by implementing security controls, monitoring network traffic, and enabling prompt detection and response to security incidents. 1.3 Data Protection IoT devices generate and transmit vast amounts of sensitive data. Network resilience safeguards data integrity, confidentiality, and availability by implementing secure communication protocols, encryption mechanisms, and access controls. It ensures that data remains protected even during network disruptions or security breaches. 1.4 System Availability IoT systems often rely on real-time data processing and communication. Network resilience ensures that data flows seamlessly, allowing IoT devices to exchange information and execute tasks without interruptions. It supports critical functions such as monitoring, control, and decision-making processes. 1.5 Risk Management Building network resilience helps organizations effectively manage risks associated with IoT deployments. By identifying vulnerabilities, implementing protective measures, and having response plans in place, organizations can minimize the impact of security incidents, reduce financial losses, and maintain the trust of stakeholders. 1.6 Regulatory Compliance Many industries have specific regulations and standards governing the security and resilience of IoT networks. By ensuring network resilience, organizations can demonstrate compliance with these requirements, avoiding penalties, legal issues, and reputational damage. 2. Factors to Consider for Network Resilience Implementing redundancy and failover mechanisms within the network infrastructure helps mitigate the impact of single points of failure. This involves deploying backup systems, redundant network paths, and failover mechanisms to ensure continuous operation despite a failure or attack. Traffic Monitoring and Anomaly Detection for Continuous network traffic monitoring helps identify abnormal patterns or behaviours that may indicate security threats or attacks. By leveraging intrusion detection and prevention systems (IDPS) and traffic analysis tools, organizations can promptly detect and respond to network anomalies, safeguarding network resilience. Moreover, segmentation and Isolation: Dividing the IoT network into segments or zones and isolating critical devices or systems from less secure ones enhances network resilience. Implementing proper network segmentation, VLANs (Virtual Local Area Networks), or software-defined networking (SDN) enables effective control, containment, and mitigation of security incidents. DDoS attacks significantly threaten network resilience by overwhelming the network's resources and causing service disruption. Deploying robust DDoS protection measures, such as traffic filtering, rate limiting, and traffic diversion, helps mitigate the impact of such attacks and ensures network availability. Incident Response and Establishing comprehensive incident response and recovery plans specific to IoT network security incidents is crucial. These plans should outline clear procedures, roles, and responsibilities to efficiently respond to and recover from security breaches or disruptions, minimizing downtime and maintaining network resilience. In addition, regular penetration testing, vulnerability assessments, and network audits help identify weaknesses and vulnerabilities in the IoT network infrastructure. Promptly addressing these issues through patches, updates, and security configuration adjustments strengthens network resilience by proactively addressing potential security risks. By implementing these measures, organizations can enhance the resilience of their IoT networks, ensuring continuous operation, prompt threat detection, and effective response to security incidents. Network resilience plays a vital role in maintaining IoT systems' integrity, availability, and reliability in the face of evolving security challenges. 3. Top Trends in IoT Security 3.1 Zero Trust and AI Zero Trust is an emerging security concept that assumes no implicit trust towards devices or users, even if they are already inside the network perimeter. Implementing Zero Trust principles in IoT networks can help mitigate the risks associated with compromised devices and unauthorized access for IoT security. In order to bolster cybersecurity measures, adopting a zero trust approach. Effectively addressing cybersecurity challenges entails not merely technological solutions but a comprehensive organizational strategy rooted in cultural and policy frameworks. Emphasizing the zero trust concept underscores the importance of policy implementation throughout the entire organization, complementing technological measures. 3.2 Supply Chain Security The complex and interconnected nature of IoT supply chains introduces security risks. The supply chain for IoT devices involves multiple stages, including device manufacturing, software development, distribution, and deployment. Each stage presents potential security risks that can compromise the integrity and security of the IoT network. This includes adopting secure supply chain management practices, such as verifying the security practices of suppliers and manufacturers, and establishing clear security requirements and standards for the entire supply chain. Conducting third-party risk assessments helps evaluate the security posture of suppliers and vendors to identify any potential vulnerabilities or weaknesses. 3.3 Network Segmentation and Segregation In IoT security, minimizing the potential impact of a compromised IoT device is crucial, and network segmentation and segregation play a vital role in achieving this goal. Network segmentation involves dividing the network into separate zones or segments, based on factors such as device type, functionality, or security requirements. The containment strategy helps minimize the impact of a security breach by isolating compromised devices and preventing lateral movement within the network. 3.4 Over-the-Air (OTA) Updates Software updates play a critical role in maintaining the integrity and security of IoT devices. IoT devices frequently require updates to address software bugs, patch vulnerabilities, or introduce new features. Over-the-Air (OTA) update mechanisms are being enhanced with robust security measures to ensure the secure delivery and installation of updates. Code signing is a prevalent practice where updates are digitally signed with cryptographic keys to verify the authenticity and integrity of the software. Secure boot is another important mechanism that establishes a chain of trust during the device boot-up process, ensuring that only authorized and tamper-free software is loaded onto the device. 3.5 Device Authentication and Authorization The increasing number of IoT devices poses a significant challenge in ensuring secure and trusted authentication and authorization. Two-factor authentication (2FA), for example, adds an extra layer of protection by requiring users or devices to provide two separate forms of authentication, such as a password and a unique code sent to a mobile device. Digital certificates, on the other hand, enable secure and trusted device authentication by leveraging public key infrastructure (PKI) technology. Each IoT device is issued a unique digital certificate, which serves as a digital identity, allowing for secure communication and verification of device authenticity. 3.6 Software-defined Networking (SDN) Security Securing Software-defined Networking (SDN) environments is paramount to protect IoT deployments. SDN offers centralized control and management of network resources, providing flexibility and scalability. This ensures that only authorized entities can access and make changes to the SDN infrastructure, preventing unauthorized access and configuration changes. Additionally, continuous traffic monitoring and analysis enable the detection of suspicious activities and potential security breaches. Encryption IoT standards and protocols should be employed to secure communication between the SDN controller, switches, and IoT devices, safeguarding data privacy and integrity. Network segmentation within the SDN environment helps limit the impact of security breaches, reducing the attack surface. 3.7 Identity and Access Management (IAM) Implementing IAM solutions, such as role-based access control (RBAC) and multi-factor authentication (MFA), within IoT networks significantly enhances network security. IAM ensures that only authorized individuals can access and interact with IoT devices and systems. RBAC enables administrators to assign specific access privileges based on user roles and responsibilities, reducing the risk of unauthorized access. Additionally, incorporating MFA adds an extra layer of security by requiring users to provide multiple forms of authentication, such as a password and a unique token or biometric verification. This significantly reduces the risk of unauthorized access even if a user's credentials are compromised. 4. Conclusion The technologies discussed in this article play a crucial role in enhancing IoT network security and resilience. By leveraging these technologies, organizations can mitigate the risks associated with IoT deployments, protect against cyber threats, and ensure the reliability and continuity of their IoT networks. As the IoT landscape evolves, staying up-to-date with these top technologies will be essential for organizations to maintain a robust and secure IoT infrastructure. The transformative landscape of Industry 4.0 demands strong network security in IoT environments. The top technologies discussed in this article empower organizations to enhance network resilience, protect against cyber threats, and ensure the uninterrupted functioning of IoT networks. Embracing these technologies and staying ahead of emerging threats, helps organizations build a secure foundation for their IoT deployments and capitalize on the vast opportunities offered by the IoT ecosystem.

Read More
Industrial IoT, IoT Security

The IoT and Edge Computing Partnership

Article | July 11, 2023

Edge computing enables the IoT to move intelligence out to the edge. If organizations have a lot of data and need to use it, they should do so in end-to-end paths, environments with lots of sensors, or environments where a lot of data is generated at the edge, thanks to the Internet of Things (IoT) and edge data sensing. Additionally, traditional methodologies fall short of the necessary standards when dealing with real-time information and the growing amount of unstructured data, which includes a sensor and IoT data. For management, power concerns, analytics, real-time needs, and other IoT situations, speed and high-speed data are essential elements. This enables edge computing to handle data. The Internet of Things (IoT) benefits from having compute capacity close to the location of a physical device or data source. IoT device data needs to be processed at the edge rather than traveling back to a central site before that analysis can be done in order to react quickly or prevent concerns. For the data processing and storage requirements of IoT devices, edge computing serves as a local source. Benefits of Using IoT and Edge Together The connection between IoT devices and the main IT networks has less latency. Greater operational efficiency and quicker response times. Network bandwidth improvement. When a network connection is lost, the system continues to run offline. Utilizing analytics algorithms and machine learning, local data processing, aggregation, and quick decision-making are possible. Industrial IoT, often known as IIoT, is the application of IoT in an industrial setting, such as factory machinery. Consider the lifespan of the large, factory-used machinery. Equipment may be stressed differently over time depending on the user, and malfunctions are a regular aspect of operations. The parts of the machinery that are most prone to damage or misuse can be equipped with IoT sensors. Predictive maintenance can be performed using the data from these sensors, cutting down on overall downtime. Because IoT devices can be used as Edge Computing, the line between IoT and Edge Computing can occasionally be razor-thin. However, the most significant difference is the ability not only to compute data locally (in real-time) but also to sync that data to a centralized server at a time when it is safe—and feasible—to send. IoT and edge computing are both here to stay since they fulfill crucial societal and commercial needs.

Read More
Industrial IoT, IoT Security

Top 10 Tools for IoT Security Testing: Mitigating Cyber Threats

Article | July 11, 2023

Explore the IoT tools for security and maintenance. These IoT monitoring tools addresses cyber security and privacy issues, catering to a various users including industrialists & individuals. With the proliferation of interconnected devices in the Internet of Things ecosystem, ensuring robust security measures has become crucial to protect against cyber threats. The complexity and diversity of IoT systems pose unique challenges, making thorough security testing an essential practice. To address these challenges, various IoT development tools have emerged that enable organizations to assess and mitigate vulnerabilities in their IoT deployments. In this article, explore the top ten tools to secure IoT and IoT testing, equipping professionals and organizations with the means to identify and address potential security weaknesses, thus bolstering the overall security posture of their IoT infrastructure. 1. AWS IoT Device Defender AWS IoT Device Defender is one of the security IoT management tools, designed to protect and manage IoT devices and fleets. Its auditing capabilities and continuous monitoring enable users to assess their IoT resources' security posture, identify vulnerabilities, and address potential gaps. By leveraging machine learning models or defining custom device behaviors, it can monitor and detect malicious activities, such as traffic from suspicious IP addresses or unusual connection attempts. The tool provides security alerts for failed audits or behavior anomalies, allowing users to mitigate potential risks quickly. Built-in actions facilitate security issue resolution, including device certificate updates, quarantine, and policy replacements. AWS IoT Device Defender offers automation for security assessments, identification of attack vectors, analysis of historical device behavior, and alarm notifications through various AWS interfaces. 2. Dynamic Application Security Testing Appknox offers two robust mobile application security solutions: Automated Dynamic Application Security Testing (DAST) and Penetration Testing (PT). With Automated DAST, users can assess the security of their mobile apps in real time while running in their operational environment. The solution provides access to real devices, allowing users to replicate real-life interactions and identify security vulnerabilities. On the other hand, Appknox's Penetration Testing solution delivers reliable and thorough security assessments by expert security researchers. Users can request a manual pentest effortlessly, and the skilled team analyzes apps to identify and eliminate potential threats. The process includes identifying the tech stack, analyzing the threat landscape, setting up breakpoints, testing responses, detecting bugs, and performing advanced threat exploits. 3. Enterprise IoT Security Enterprise IoT Security is a comprehensive Zero Trust solution designed to address IoT devices' security challenges in modern enterprises. It helps eliminate implicit trust and enforces zero-trust principles through least privilege access, continuous trust verification, and continuous security inspection. With this solution, organizations can quickly discover and assess every IoT device, easily segment and enforce the least privileged access, and protect against known and unknown threats. By simplifying operations, Enterprise IoT Security enables faster deployment, with a 15-time faster deployment than other solutions. The solution offers better and faster protection for IoT devices, delivering 70 times more security efficiency and 20 times speedier policy creation. 4. Azure Sphere Azure Sphere is a secure IoT platform offered by Microsoft that allows businesses to create, connect, and maintain intelligent IoT devices. It provides end-to-end security, from the silicon level to the operating system (OS) to the cloud. With Azure Sphere, organizations can securely connect, manage, and protect existing and new IoT devices. The platform offers over-the-air updates, integration with IoT platform services, and continuous security improvements. It helps businesses deploy real-time security patches, maintain device operations, and accelerate time to market. Azure Sphere incorporates essential security properties and offers comprehensive security and compliance. 5. Microsoft Defender for IoT Microsoft Defender for IoT is a comprehensive security solution that provides real-time asset discovery, vulnerability management, and threat protection for the Internet of Things and industrial infrastructure, including ICS/OT environments. It offers context-aware visibility into IoT and OT assets, enabling organizations to manage their security posture and reduce attack surfaces based on risk prioritization. With behavioral analytics, it detects and responds to attacks across IT and OT networks. Integrated with SIEM/SOAR and XDR tools, it delivers unified security and leverages threat intelligence for automatic response. Microsoft Defender for IoT is designed to meet the unique security needs of various industries and supports complete endpoint protection when combined with Defender for Endpoint. 6. IoT Security Forescout offers an IoT security solution that automates security measures and provides visibility for every device connected to the network. Their zero-trust approach ensures complete device visibility, proactive network segmentation, and least-privilege access control for IoT, OT, IoMT, and IT devices. The platform classifies and monitors devices in real time, identifies weak credentials, and enforces strong passwords. It also enables dynamic network segmentation and automates zero trust policy orchestration across multi-vendor environments. Forescout's solution efficiently manages asset inventory and device lifecycle and has been proven to scale for enterprise-level deployments. 7. ThingSpace The ThingSpace Platform for IoT offers a comprehensive set of iot tools and devices for developing and managing the lifecycle of IoT devices. It enables connectivity management at scale, allowing secure activation on the Verizon network and providing features to troubleshoot, locate, and manage IoT devices. Whether at the prototype stage or ready to scale for enterprise-level deployment, ThingSpace provides the necessary resources for IoT solution development and management. As a Magic Quadrant Leader for IoT Connectivity Services, ThingSpace offers solutions for software management, device readiness, and overall device lifecycle management. Businesses can collaborate with technology leaders through their Executive Briefing Program to achieve their specific goals and gain a competitive edge. 8. Verimatrix The Verimatrix Secure Delivery Platform offers a unified user experience by combining cybersecurity and anti-piracy services into a comprehensive cloud ecosystem. It provides media companies, content owners, streaming providers, and broadcast operators with a single pane of glass experience for securing content, applications, and devices. Key offerings include Streamkeeper Multi-DRM for cloud-based digital rights management, Verimatrix App Shield for zero code hardening of mobile applications, Verimatrix Video Content Authority System (VCAS) for real-time monitoring, and Streamkeeper Counterspy for cybersecurity and anti-piracy solutions. The platform also facilitates partner integrations, enabling seamless onboarding and revenue preservation. 9. Trustwave Trustwave's Managed IoT Security provides comprehensive solutions to secure the Internet of Things (IoT) and minimize the risk of compromise. With expertise from Trustwave SpiderLabs, it offers knowledge about network assets, identifies weaknesses in applications, servers, APIs, and cloud clusters, and enables secure IoT deployment with quick validation of fixes. This reduces the risk of compromised devices, which can lead to various threats, including DoS attacks, privacy violations, and data theft. Trustwave's services cater to IoT developers/manufacturers, offering product security reviews, testing, and incident readiness services. For IoT implementers, it provides managed security services and testing to safeguard deployments and associated data. 10. ARMIS Agentless Device Security Platform The ARMIS Agentless Device Security Platform supports implementing the Critical Security Controls(CIS) framework. Developed by the Center for Internet Security (CIS), these controls are periodically updated by a global community of experts. ARMIS aligns with the CIS Controls and provides a comprehensive set of security controls to address the framework's requirements. The platform caters to enterprises of all sizes and offers different implementation groups based on risk profile and available resources. With ARMIS, organizations can enhance their cybersecurity posture and implement the CIS Controls effectively. Final Thoughts Security is a major concern in IoT tools and software due to the proliferation of connected devices, the diverse and complex nature of IoT ecosystems, the need to protect data privacy and confidentiality, the lack of standardization, the long lifecycles of devices, and the distributed and scalable nature of IoT deployments. Addressing these concerns is crucial to prevent unauthorized access, data breaches, and ensure the integrity and privacy of IoT data. The IoT tools and technologies discussed in this article represent some of the top options for conducting comprehensive IoT security testing. By leveraging these tools, professionals and organizations can proactively identify and address vulnerabilities in their IoT systems, ensuring their data and devices' confidentiality, integrity, and availability. By incorporating these tools into their security practices, organizations can bolster their IoT security strategy and enhance their ability to protect against emerging threats in the dynamic IoT landscape.

Read More

Spotlight

T-Systems

Like no other company in the world, T-Systems provides ICT solutions from a single source. As Deutsche Telekom's business and corporate customer arm, we shape the connected future of business and society, set trends with innovative ICT solutions, and create the digital world of tomorrow. Digitization does not focus on the size of a company and neither do our 47,800 employees in over 20 countries: We support large multi-national corporations and medium-sized companies on the path to connected work, production, and sales across all sectors worldwide. In addition to services from the cloud, the range of services centers around M2M, security solutions, complementary mobile communications and fixed network products, and solutions for virtual collaboration and IT platforms, all of which form the basis for our customers' digital business models.

Related News

Software and Tools

InnoPhase IoT Selects STMicroelectronics To Deliver Industry’s Lowest Power Sensor-to-Cloud IoT Solution

Business Wire | October 04, 2023

InnoPhase IoT, a fabless semiconductor company specializing in ultra-low power Wi-Fi IoT solutions and an ST Authorized Partner since 2020, announces an evaluation platform that combines STMicroelectronics (NYSE: STM) STM32U5 MCU evaluation board with InnoPhase IoT’s Talaria TWO™ Wi-Fi/BLE evaluation board. The board seamlessly integrates ultra-low power Wi-Fi/BLE with STM32 microcontrollers to enable the industry’s lowest-power cloud-connected battery-powered IoT devices. Target applications for the combination include wearables, industrial IoT, medical, commercial, and smart-home automation. The STM32U5 MCU is based on an Arm® Cortex®-M33 core and is a new generation of 32-bit microcontroller targeting the most demanding power/performance requirements. The MCU integrates the Cortex-M33 core with up to 4MB of flash memory and 2.5MB of SRAM to enable the highest performance amongst 32-bit MCUs, while cutting power by up to 90% and extending battery life using a range of innovative power-management features. The InnoPhase IoT Talaria TWO Wi-Fi/BLE5 multiprotocol wireless platform enables the development of ultra-low power cloud-connectivity applications without compromising performance. The industry’s lowest Tx current of 81ma at MCS7 and DTIM-10 current at 57uA extends battery life to 10-plus years for IoT devices. Talaria TWO features Wi-Fi provisioning using BLE, secured over-the-air updates, and seamless cloud connectivity to AWS and Microsoft Azure, providing ease of development and deployment for IoT solutions. The InnoPhase IoT platform’s high integration, small size, and multiple antenna options allow customers to meet new use case requirements. The seamless integration of STM32U5 and Talaria TWO evaluation boards allows designers to build ultra-low power sensor-to-cloud connected IoT solutions. Software integration is provided via ST’s I-CUBE-T2 software expansion for STM32Cube. The host application on STM32U5 uses the InnoPhase IoT Host APIs (HAPI) and communicates with the application running on the InnoPhase IoT Talaria TWO device. The kit supports AWS IoT services. According to Bertrand Denis, STM32 Product Manager at STMicroelectronics, “InnoPhase IoT Talaria TWO’s low-power Wi-Fi connectivity to STM32U5 offers long battery life for ultra-low-power smart applications, including wearables, personal medical devices, home automation and industrial IoT. Our collaborating with InnoPhase IoT will help customers meet low-power, long battery-life requirements without sacrificing performance while implementing Wi-Fi cloud connectivity.” Untethered, long battery life devices with direct cloud connectivity are unleashing the potential of IoT in multiple markets, said InnoPhase IoT President and COO Wiren Perera. The combination of ST’s lowest-power MCU, the STM32U5, with our industry’s lowest-power Wi-Fi/BLE solution delivers a platform enabling rapid time-to-development and deployment utilizing ubiquitous Wi-Fi connectivity for our customers. The STM32U5 MCUs and Talaria TWO Wi-Fi/BLE SoC/Modules are currently in production. The STM32U5 NUCLEO-U575Z1-Q evaluation board is available now to order at https://www.st.com/en/evaluation-tools/nucleo-u575zi-q.html#sample-buy and InnoPhase IoT’s Talaria TWO EVB-A (INP3014/INP3015) evaluation kits are available now to order at https://innophaseiot.com/purchase/. Talaria TWO Wi-Fi/BLE modules are certified with the Wi-Fi Alliance and Bluetooth SIG and have global regulatory certification. InnoPhase IoT successfully demonstrated the STM32U5 plus Talaria TWO sensor to AWS connectivity at Sensors Converge 2023 conference in Santa Clara, California. To schedule a briefing meeting or demo, please contact sales@innophaseiot.com. About InnoPhase IoT InnoPhase IoT Inc., headquartered in San Jose, CA, is a fabless wireless semiconductor platform company dedicated to enable the promise of Internet of Things (IoT) solutions. Its flagship product, the Talaria TWO™ multiprotocol chipset and modules deliver the world’s lowest power Wi-Fi radio to the rapidly growing untethered battery-operated IoT device market. InnoPhase IoT enables end-to-end market-ready extreme low power wireless IoT solutions with extended battery life, a low total cost of ownership (TCO), high-performance wireless use cases and rapid time to market. For more information, contact info@innophaseiot.com or visit the InnoPhase IoT.com website.

Read More

Industrial IoT, Platforms, Security

Telit Cinterion Announces Sale of Its Cellular Automotive Module Unit to Kontron

Prnewswire | July 04, 2023

Telit Cinterion, a global leader in the Internet of Things (IoT), and Kontron AG (KTN:GR), a global supplier of smart IoT solutions and professional IT services, today jointly announced that they have entered into a binding agreement under which Telit Cinterion will sell its cellular automotive IoT product business to Kontron. The intended transaction includes Telit Cinterion's complete portfolio of cellular automotive wireless communication modules, ranging from 4G LTE to 5G. The expected transaction reaffirms California-based Telit Cinterion's market position as the leading Western provider of cybersecure IoT solutions, and the company's growing reach in key industrial IoT segments and end markets including energy, telematics, e-health, broadband, and security & surveillance. With approximately 4,500 employees across 21 countries, Kontron is a technology provider to top global brands. The company posted sales of EUR 1,342 million in 2022. The intended transaction will be submitted to the relevant workers' councils. The transaction is expected to close in Q3 2023, subject to regulatory approvals and other customary closing conditions. Kontron and Telit Cinterion customers and partners will continue to receive the outstanding supply, support, and service to which they have been accustomed. All relevant parties will receive updates throughout the transaction, upon closing and ensuing integration period. About Telit Cinterion Telit Cinterion is a global enabler of the intelligent edge providing complete solutions that reduce time to market and costs, delivering custom designed, ready for market connected devices in addition to maintaining the industry's broadest portfolio of enterprise-grade wireless communication and positioning modules, cellular MVNO connectivity plans and management services, edge-cloud software and data orchestration, and IoT and Industrial IoT platforms. As the largest western provider pioneering IoT innovation, Telit Cinterion delivers award-winning and highly secure IoT solutions, modules and services for the industry's top brands. About Kontron Kontron AG (www.kontron.com, ISIN AT0000A0E9W5, WKN A0X9EJ, KTN) is a leading IoT technology company. For more than 20 years, Kontron has been supporting companies from a wide range of industries to achieve their business goals with intelligent solutions. From automated industrial operations, smarter and safer transport to advanced communications, medical and energy solutions, the company delivers technologies that add value for its customers. Kontron is listed on the SDAX® of the German Stock Exchange and has around 4,500 employees with subsidiaries in more than 20 countries around the world.

Read More

Industrial IoT, Platforms

Intelsat Enhances Deutsche Telekom IoT’s Reach with FlexEnterprise

Intelsat | March 01, 2023

On February 28, 2023, Intelsat, a leading provider of inflight connectivity operating one of the world's largest integrated satellite and terrestrial networks, announced that Deutsche Telekom IoT (DT IoT) is looking to integrate Intelsat FlexEnterprise. By integrating with FlexEnterprise, DT IoT can extend its powerful, user-friendly, cloud-based Internet of Things (IoT) offering across locations regardless of fiber or cellular connectivity options. IoT services are increasingly utilized by a wide range of industries, collecting data from thousands of devices and analyzing it to help organizations improve system efficiency, reduce waste, monitor sensitive environments, and gain new insights into operations and procedures. By leveraging FlexEnterprise as a complement to cellular connectivity, DT can expand the reach and efficacy of its solution and generate better outcomes for its customers. FlexEnterprise is an enterprise-grade connectivity service that combines satellite and terrestrial networks to advance internet, cloud, and private networks. Intelsat manages the global FlexEnterprise infrastructure, removing the need for clients to maintain satellite infrastructure and expertise. DT will receive FlexEnterprise from Intelsat as a satellite-as-a-service offering, thereby reducing the time and expense required to operate new services. The Intelsat FlexEnterprise satellite platform permits mobile network operators to provide terrestrial-like services regardless of location. For instance, industrial IoT (IIoT) customers can connect devices in inaccessible places to control wind turbines on mountaintops or offshore or to assess flood risks by measuring the water levels in remote areas. Brian Jakins, Intelsat Networks General Manager, shared, "Satellite connectivity allows IoT to connect physical objects and devices from anywhere on the globe to the virtual world to enhance real-time data collection, analysis and decision making," He added, "With FlexEnterprise, DT expands the usefulness of its IoT offering, especially for widely distributed applications like renewable energy infrastructure and green IoT environmental monitoring." (Source – Business Wire) About Intelsat Intelsat is a leading provider of secure and seamless satellite-based communications, serving government, NGO and commercial customers across the globe. With one of the world's most advanced satellite fleet and connectivity infrastructures, it connects people and tools across oceans, continents and skies, enabling communication, cooperation and coexistence. With a legacy of innovation, the company is focused on addressing new challenges and disrupting the space industry while leading the digital transformation of the industry. It is based in McLean, Virginia and was founded in 1964.

Read More

Software and Tools

InnoPhase IoT Selects STMicroelectronics To Deliver Industry’s Lowest Power Sensor-to-Cloud IoT Solution

Business Wire | October 04, 2023

InnoPhase IoT, a fabless semiconductor company specializing in ultra-low power Wi-Fi IoT solutions and an ST Authorized Partner since 2020, announces an evaluation platform that combines STMicroelectronics (NYSE: STM) STM32U5 MCU evaluation board with InnoPhase IoT’s Talaria TWO™ Wi-Fi/BLE evaluation board. The board seamlessly integrates ultra-low power Wi-Fi/BLE with STM32 microcontrollers to enable the industry’s lowest-power cloud-connected battery-powered IoT devices. Target applications for the combination include wearables, industrial IoT, medical, commercial, and smart-home automation. The STM32U5 MCU is based on an Arm® Cortex®-M33 core and is a new generation of 32-bit microcontroller targeting the most demanding power/performance requirements. The MCU integrates the Cortex-M33 core with up to 4MB of flash memory and 2.5MB of SRAM to enable the highest performance amongst 32-bit MCUs, while cutting power by up to 90% and extending battery life using a range of innovative power-management features. The InnoPhase IoT Talaria TWO Wi-Fi/BLE5 multiprotocol wireless platform enables the development of ultra-low power cloud-connectivity applications without compromising performance. The industry’s lowest Tx current of 81ma at MCS7 and DTIM-10 current at 57uA extends battery life to 10-plus years for IoT devices. Talaria TWO features Wi-Fi provisioning using BLE, secured over-the-air updates, and seamless cloud connectivity to AWS and Microsoft Azure, providing ease of development and deployment for IoT solutions. The InnoPhase IoT platform’s high integration, small size, and multiple antenna options allow customers to meet new use case requirements. The seamless integration of STM32U5 and Talaria TWO evaluation boards allows designers to build ultra-low power sensor-to-cloud connected IoT solutions. Software integration is provided via ST’s I-CUBE-T2 software expansion for STM32Cube. The host application on STM32U5 uses the InnoPhase IoT Host APIs (HAPI) and communicates with the application running on the InnoPhase IoT Talaria TWO device. The kit supports AWS IoT services. According to Bertrand Denis, STM32 Product Manager at STMicroelectronics, “InnoPhase IoT Talaria TWO’s low-power Wi-Fi connectivity to STM32U5 offers long battery life for ultra-low-power smart applications, including wearables, personal medical devices, home automation and industrial IoT. Our collaborating with InnoPhase IoT will help customers meet low-power, long battery-life requirements without sacrificing performance while implementing Wi-Fi cloud connectivity.” Untethered, long battery life devices with direct cloud connectivity are unleashing the potential of IoT in multiple markets, said InnoPhase IoT President and COO Wiren Perera. The combination of ST’s lowest-power MCU, the STM32U5, with our industry’s lowest-power Wi-Fi/BLE solution delivers a platform enabling rapid time-to-development and deployment utilizing ubiquitous Wi-Fi connectivity for our customers. The STM32U5 MCUs and Talaria TWO Wi-Fi/BLE SoC/Modules are currently in production. The STM32U5 NUCLEO-U575Z1-Q evaluation board is available now to order at https://www.st.com/en/evaluation-tools/nucleo-u575zi-q.html#sample-buy and InnoPhase IoT’s Talaria TWO EVB-A (INP3014/INP3015) evaluation kits are available now to order at https://innophaseiot.com/purchase/. Talaria TWO Wi-Fi/BLE modules are certified with the Wi-Fi Alliance and Bluetooth SIG and have global regulatory certification. InnoPhase IoT successfully demonstrated the STM32U5 plus Talaria TWO sensor to AWS connectivity at Sensors Converge 2023 conference in Santa Clara, California. To schedule a briefing meeting or demo, please contact sales@innophaseiot.com. About InnoPhase IoT InnoPhase IoT Inc., headquartered in San Jose, CA, is a fabless wireless semiconductor platform company dedicated to enable the promise of Internet of Things (IoT) solutions. Its flagship product, the Talaria TWO™ multiprotocol chipset and modules deliver the world’s lowest power Wi-Fi radio to the rapidly growing untethered battery-operated IoT device market. InnoPhase IoT enables end-to-end market-ready extreme low power wireless IoT solutions with extended battery life, a low total cost of ownership (TCO), high-performance wireless use cases and rapid time to market. For more information, contact info@innophaseiot.com or visit the InnoPhase IoT.com website.

Read More

Industrial IoT, Platforms, Security

Telit Cinterion Announces Sale of Its Cellular Automotive Module Unit to Kontron

Prnewswire | July 04, 2023

Telit Cinterion, a global leader in the Internet of Things (IoT), and Kontron AG (KTN:GR), a global supplier of smart IoT solutions and professional IT services, today jointly announced that they have entered into a binding agreement under which Telit Cinterion will sell its cellular automotive IoT product business to Kontron. The intended transaction includes Telit Cinterion's complete portfolio of cellular automotive wireless communication modules, ranging from 4G LTE to 5G. The expected transaction reaffirms California-based Telit Cinterion's market position as the leading Western provider of cybersecure IoT solutions, and the company's growing reach in key industrial IoT segments and end markets including energy, telematics, e-health, broadband, and security & surveillance. With approximately 4,500 employees across 21 countries, Kontron is a technology provider to top global brands. The company posted sales of EUR 1,342 million in 2022. The intended transaction will be submitted to the relevant workers' councils. The transaction is expected to close in Q3 2023, subject to regulatory approvals and other customary closing conditions. Kontron and Telit Cinterion customers and partners will continue to receive the outstanding supply, support, and service to which they have been accustomed. All relevant parties will receive updates throughout the transaction, upon closing and ensuing integration period. About Telit Cinterion Telit Cinterion is a global enabler of the intelligent edge providing complete solutions that reduce time to market and costs, delivering custom designed, ready for market connected devices in addition to maintaining the industry's broadest portfolio of enterprise-grade wireless communication and positioning modules, cellular MVNO connectivity plans and management services, edge-cloud software and data orchestration, and IoT and Industrial IoT platforms. As the largest western provider pioneering IoT innovation, Telit Cinterion delivers award-winning and highly secure IoT solutions, modules and services for the industry's top brands. About Kontron Kontron AG (www.kontron.com, ISIN AT0000A0E9W5, WKN A0X9EJ, KTN) is a leading IoT technology company. For more than 20 years, Kontron has been supporting companies from a wide range of industries to achieve their business goals with intelligent solutions. From automated industrial operations, smarter and safer transport to advanced communications, medical and energy solutions, the company delivers technologies that add value for its customers. Kontron is listed on the SDAX® of the German Stock Exchange and has around 4,500 employees with subsidiaries in more than 20 countries around the world.

Read More

Industrial IoT, Platforms

Intelsat Enhances Deutsche Telekom IoT’s Reach with FlexEnterprise

Intelsat | March 01, 2023

On February 28, 2023, Intelsat, a leading provider of inflight connectivity operating one of the world's largest integrated satellite and terrestrial networks, announced that Deutsche Telekom IoT (DT IoT) is looking to integrate Intelsat FlexEnterprise. By integrating with FlexEnterprise, DT IoT can extend its powerful, user-friendly, cloud-based Internet of Things (IoT) offering across locations regardless of fiber or cellular connectivity options. IoT services are increasingly utilized by a wide range of industries, collecting data from thousands of devices and analyzing it to help organizations improve system efficiency, reduce waste, monitor sensitive environments, and gain new insights into operations and procedures. By leveraging FlexEnterprise as a complement to cellular connectivity, DT can expand the reach and efficacy of its solution and generate better outcomes for its customers. FlexEnterprise is an enterprise-grade connectivity service that combines satellite and terrestrial networks to advance internet, cloud, and private networks. Intelsat manages the global FlexEnterprise infrastructure, removing the need for clients to maintain satellite infrastructure and expertise. DT will receive FlexEnterprise from Intelsat as a satellite-as-a-service offering, thereby reducing the time and expense required to operate new services. The Intelsat FlexEnterprise satellite platform permits mobile network operators to provide terrestrial-like services regardless of location. For instance, industrial IoT (IIoT) customers can connect devices in inaccessible places to control wind turbines on mountaintops or offshore or to assess flood risks by measuring the water levels in remote areas. Brian Jakins, Intelsat Networks General Manager, shared, "Satellite connectivity allows IoT to connect physical objects and devices from anywhere on the globe to the virtual world to enhance real-time data collection, analysis and decision making," He added, "With FlexEnterprise, DT expands the usefulness of its IoT offering, especially for widely distributed applications like renewable energy infrastructure and green IoT environmental monitoring." (Source – Business Wire) About Intelsat Intelsat is a leading provider of secure and seamless satellite-based communications, serving government, NGO and commercial customers across the globe. With one of the world's most advanced satellite fleet and connectivity infrastructures, it connects people and tools across oceans, continents and skies, enabling communication, cooperation and coexistence. With a legacy of innovation, the company is focused on addressing new challenges and disrupting the space industry while leading the digital transformation of the industry. It is based in McLean, Virginia and was founded in 1964.

Read More

Events