How 5G Will Unlock Unseen Opportunities in Industrial IoT

Manufacturing industry or the Industrial Internet of Things has been one of the driving verticals for development of 5G technologies. Wide 5G deployement for Industrial IoT has long been in the pipeline but we might expect it to be a reality very soon.

The true success of 5G depends on the verticals as trends suggest that that Industrial IoT alone will triple the number of needed base stations globally. And many verticals will need efficient wireless connectivity to become successful. 5G has features that are specifically designed to address the needs of vertical sectors, such as network slicing and URLLC. The ultra-reliable low latency communications and massive machine type communications required by the IIoT will soon be realized.

Table of Contents:

How Will 5G Impact Industrial IoT?
5G Accelerations for IIoT
Industrial 5G

How Will 5G Benefit Industrial IoT?

IoT is a B2B application and users just want to get actionable data from their sensors and not worry about whether it’s old data or unreliable data. I think 5G changes this dynamic significantly over the long term by standardizing and simplifying the experience and interactions, and possibly engaging more of the industry to help solve IoT’s problems but also improve the total experience.

- Anshel Sag, analyst at Moor Insights & Strategy


• Data-Transfer Speeds

Any IoT is said to be commercially successful depending on how fast it can set up communications with other IoT devices, software based websites or applications, phones, and tablets. 5G promises exactly all of this with significant increase in transfer speeds.

5G is 10x faster than its LTE counterparts and allows IoT devices to communicate and share data faster than ever. All IoT devices will benefit from the faster speed of 5G with reduced lag and improved sending and receiving of data and notifications between connected devices.

• Greater Network Reliability

5G networks also offer more reliable and stable connection which is extremely important for any IoT including devices like locks, security cameras and monitoring systems that depend on real-time updates.

With reliable connectivity consumers will be the greater beneficiary.

It is however, imperative for manufactures to trust and invest in 5G compatible devices to reap the benefits of high-speed connectivity, very low latency, and a greater coverage that will arrive with the next generation network.

READ MORE: How Will the Emergence of 5G Affect Federated Learning?

5G Accelerations for IIoT


• Diversity in Industrial IoT

The opportunities that industrial IoT bring with is varied and its used cases span the spectrum from indoor to outdoor, less demanding to mission-critical, data rate from dozens of bps to gbps, device motion from fixed to mobility, and power source from button battery to high voltage.

Predictive maintenance, smart metering, asset tracking, and fleet management are some of the commonly known opportunities for IIoT, which be extended further by 5G through continued diversity and expansion.

• 5G Inspires Untapped Frontiers

Industrial IoT application areas such as mobile robot control in production automation and autonomous vehicles in open pit mining require wide mobility, low latency and mission-critical reliability. They rely on wireless access at 50ms to 1ms latency and service reliability from 5 nines to 6 nines.

Though 4G/LTE has attempted to address these areas of IIoT application it has failed due to unsatisfactory performance. With ultra-reliable and low latency connection, 5G will take industrial IoT to unconquered spaces.

• Managing the Enterprise 5G Network

Typically, enterprise IT is responding to the business demand from Operational Technology (OT) and mandates security, integration, visibility, control, and compatibility. In this scenario, 5G is not about “what,” but about “how”. IT needs to consider the right approach to bring 5G to the enterprise and decide whether to co-manage with the service provider (SP) or self-manage. The experience of IT in managing Industrial Ethernet and Wi-Fi may not hold when it comes to 5G. IT will likely require OT’s partnership to address complexity, security, integration, and other new challenges that 5G presents.

Industrial 5G

The potential for industrial 5G huge as it enables whole new business models.

Industrial IoT has a core requirement of the ability to connect sensors, devices, software applications, production process, workers and consumers. The connectivity requires to be seamless vertical and horizontal integrations of all layers of automation pyramids that increases operational efficiency of the plant floor and the supply chain by optimal use of data, information and analytics. This can be improved by five key elements:

• Improved Connectivity
• Availability
• Low Latency
• Flexibility
• Speed

Industrial 5G will impact these areas of the manufacturing industry to guide the success of Industrial IoT.

Industrial 5G will play a key role in helping industrial users achieve the goals of Industrial IoT. 5G offers wireless communications services with reduced latency, increased connection density, and improved flexibility compared to the current 4G generation.  5G technology has a theoretical downlink peak speed of 20 Gbps (gigabits per second), which is about 20 times faster than the current generation.

The key is to start building IoT devices with broadly adopted operating systems, built-in security all the way down to the silicon, verifiable and updatable firmware, and mainstream application development tooling.

- Anshel Sag, analyst at Moor Insights & Strategy


The push and pull in achieving 5G success in IoT will be there until technology providers and end users work together to set up a consensus on standardization. The success will also depend on best-of-breed approach allowing the introduction of new technology over the lifecycle. Software and system integration will also be important attributes to a successful 5G deployment.

READ MORE: How Will IoT Revolutionize Pharmaceutical Manufacturing?

Spotlight

Antenova M2M

Antenova M2M is a leading provider of high performing standard antennas and radio antenna modules for wireless M2M and consumer electronic devices. Antenova M2M’s market proven gigaNOVA® range of standard antennas and RADIONOVA® RF antenna solutions are ideally suited for a broad range of wireless connectivity requirements, including GSM and CDMA, 3G, 4G, LTE, GPS, Wi-Fi®, Bluetooth®, ISM, WiMAX™, ZigBee® and FM.

OTHER ARTICLES
Industrial IoT, IoT Security

Understanding IoT Data Protocols: Why Do They Matter for IoT Data?

Article | July 11, 2023

Learn more about IoT data protocols and what makes them essential for a cohesive IoT ecosystem. This article will provide a detailed view of data protocols and their importance for modern businesses. 1 Significance of IoT Data Protocols for Business Operations IoT ecosystems form an integral part of many businesses today, and IoT data protocols serve as the foundation for seamless communication and data exchange between connected devices. IoT protocols ensure the integrity and reliability of data, empowering businesses to make informed decisions, optimize operations, enhance productivity, and drive innovation. With standardized and secure IoT protocols and standards, companies can achieve efficient data transmission and allow for scalability across diverse IoT ecosystems. Understanding and leveraging the right protocols is essential for businesses to benefit from the full potential of their IoT investments and gain a competitive edge in today's interconnected world. 2 Understanding IoT Data Protocols IoT data protocols are standardized rules and formats that ensure efficient and secure data transmission for efficient IoT communication. By adhering to established protocols such as MQTT, CoAP, and AMQP, businesses can maintain interoperability, scalability, and robust data transmission of IoT data, ensuring efficient data storage and management for their IoT ecosystem. This, in turn, empowers organizations to monitor and control critical processes in real-time and make informed decisions. 2.1 Role of IoT Data Protocols in the IoT Ecosystem The seamless functioning of an organization's IoT ecosystem relies on the pivotal role played by IoT data protocols. These protocols, serving as the communication backbone, enable secure transfer and efficient data processing, thereby facilitating the seamless exchange of information within the IoT network. Consequently, businesses operating within the IoT sphere can harness the power of reliable data communication enabled by these protocols to unlock insights that drive innovation. IoT data protocols serve as the vital link that fuels the interconnected landscape of IoT devices, elevating the efficiency and efficacy of businesses as they navigate the complex web of IoT technologies and leverage its immense potential. 2.2 Overview of Common IoT Data Protocols The IoT data protocols come with their own set of applications and challenges. Understanding each protocol's individual use cases will help businesses set up and scale their IoT device ecosystems. MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight and efficient protocol designed for low-power devices and unreliable networks. It uses a publish-subscribe model, making it ideal for IoT applications where bandwidth and power consumption are crucial factors, such as remote monitoring and control systems. CoAP (Constrained Application Protocol): For resource-constrained IoT devices, CoAP is designed to enable smooth communication over the Internet. It uses a client-server model and is suitable for IoT applications where devices have limited processing power and memory, such as smart home automation, environmental monitoring, and healthcare systems. HTTP (Hypertext Transfer Protocol): Although primarily designed for web applications, HTTP is also used in IoT systems for data transmission. The ubiquity and familiarity of HTTP make it a widely supported communication protocol. As a result, it is suitable for IoT devices that require high-level interoperability in applications that involve cloud integration, data analytics, and web-based control interfaces. AMQP (Advanced Message Queuing Protocol): AMQP is a flexible messaging protocol ensuring reliable, secure, and interoperable communication between IoT devices and back-end systems. It supports both publish-subscribe and point-to-point messaging models, making it suitable for IoT scenarios involving complex routing, large-scale deployments, and enterprise integrations. Zigbee: Zigbee is a wireless protocol designed specifically for low-power, short-range communication in IoT networks. It operates on the IEEE 802.15.4 standard and is known for its energy efficiency and mesh networking capabilities, leading to its widespread adoption in home automation, intelligent lighting, and industrial control systems. 3 Considerations for Choosing the Right IoT Data Protocol Selecting a suitable IoT data protocol is essential to maintain smooth interoperability and a unified IoT ecosystem. Compatibility with existing infrastructure is crucial for seamless integration and cost-effective implementation. Security measures must also be robust to protect sensitive data from unauthorized access and potential breaches. Additionally, scalable and flexible data protocols in IoT are vital to accommodate future growth and evolving business requirements. Furthermore, the protocol's reliability and efficiency in transmitting data should align with the use case of IoT systems. Finally, considering the protocol's industry adoption and standardization level will also help minimize risks and enhance interoperability. 4 In Summary IoT data protocols play a significant role in facilitating efficient and secure business operations within the IoT ecosystem. By learning more about the use cases of the most common protocols in the industry, businesses can consider factors such as compatibility, security, scalability, and reliability while choosing the most suitable option for their business. As IoT systems grow, more complex and reliable data protocols will emerge, paving the way for enhanced connectivity, interoperability, and transformative opportunities across various industries.

Read More
IoT Security

Security Implications of Cloud-based IoT Software

Article | July 17, 2023

Physical and digital security are changing due to cloud-based IoT software, which makes it possible to combine them and use them to utilize data better. In almost every sector, data is essential to success, and security is no exception. To better understand what's going on in your business, you can combine cloud-based solutions that contain all the information on a single interface. For instance, integrating security camera feeds with cloud-based access control systems enables real-time visual identification verification. Utilizing cloud-based IoT technology also enhances productivity and enables quick replies. Combining digital and physical security, often known as security convergence, is another technique to optimize IoT and cloud-based security solutions. To guard against internet flaws and intrusions, a cloud-based physical security system needs cybersecurity software. In a similar vein, physical security measures prevent sensitive data from getting into the wrong hands. Teams for physical and cyber security might combine to provide a more comprehensive plan of action. Maintaining current versions of the technology you are using in your security plan is necessary for future-proofing your technology. To ensure that your cloud-based system has no vulnerabilities that could expose your company to cybersecurity risks, it is crucial to keep all software updated. Updates can be automated and carried out remotely with cloud-based software, requiring little effort on your part to keep your software current. You have the chance to develop a security system that is future-proof when a firm adopts cloud-based IoT technologies as part of your security plan. When organizations use IoT technology, cybersecurity is a significant concern. However, combining physical and digital security lets you ensure your cloud-based system is well-protected from vulnerabilities. In addition, your security and IT teams will be better able to manage the evolving security landscape if you combine physical and digital security ideas.

Read More
IoT Security

Importance of Big Data for IoT in Businesses

Article | October 11, 2023

Discover the crucial role of big data capabilities in unlocking the potential of IoT for businesses. This article covers their synergy, challenges, and value in decision-making and revenue generation. Contents 1 Why Big Data and IoT Matter for Businesses 2 Understanding Synergy of Big Data and IoT 2.1 How IoT generates Big Data 2.2 Challenges of Processing Big Data from IoT Devices 2.3 Importance of Big Data in IoT Applications 3 The Value of Big Data and IoT for Businesses 3.1 Improved Decision-making for Businesses 3.2 Generate New Revenue Streams 4 Final Thoughts 1. Why Big Data and IoT Matter for Businesses The internet of things (IoT) is connecting all types of physical assets to the internet, from smart wearables that track wearer’s vitals to connected industrial units that can report any malfunctions automatically. Big data in IoT is a natural outcome with the growth of IoT devices, with an immense surge in the amount of data being generated. There are currently over 13 billion connected IoT devices worldwide. (Source – Techjury) This data is extremely valuable to businesses as it can help streamline operations, predict trends, and diagnose device issues. Certain functions of IoT devices that are crucial for modern businesses, such as enabling predictive maintenance, depend on the analysis of the data generated every second. However, to maximize the ROI from their IoT ecosystem, businesses must first manage and process the vast amounts of unstructured data they produce. This is where big data capabilities come in. 2. Understanding Synergy of Big Data and IoT Big data and the IoT are fundamentally different concepts, but are closely connected. Big data is a term that is used for a great amount of data that is characterized by volume, velocity, variety and veracity (or the ‘trustworthiness’ of data). The IoT is a term for physical devices or objects linked to the internet using an assortment of technologies. Understanding the synergy between these two technologies will be critical for businesses looking to leverage their full potential. 2.1 How IoT generates Big Data IoT is one of the primary drivers of big data growth. The vast number of interconnected devices in the IoT ecosystem generates a massive amount of data every second. This data includes information on user behavior, device performance, and environmental conditions, among others. The nature of this data makes it challenging to store, process, and analyze using traditional data management tools. This is where big data technologies such as Hadoop, Spark, and NoSQL databases come in, providing the ability to manage massive amounts of data in near-real-time, enabling critical applications of big data in IoT. For businesses, processing IoT data is synonymous with processing big data, due to the nature of the data generated by an IoT ecosystem. 2.2 Challenges of Processing Big Data from IoT Devices IoT data processing is a complex and challenging task due to several reasons. Firstly, the sheer volume of data generated by these devices is enormous and is only increasing. This requires a robust infrastructure and specialized tools to store, manage, and analyze the data efficiently. This data is also generally unstructured, heterogeneous, and complex, making it difficult to process using traditional data management and analysis techniques. Moreover, it is often noisy and may contain errors or outliers, which can impact the accuracy of data analysis. Businesses also face a challenge when securing such vast amounts of data. Since IoT devices collect sensitive information such as personal and financial data at scale, it is critical to ensure that data is encrypted, transmitted securely, and stored safely. Additionally, IoT devices often operate in remote locations with limited connectivity, making it challenging to transmit data to the cloud for storage and analysis. As IoT devices continue to proliferate and generate increasingly large amounts of data, businesses must adopt big data technologies to gain actionable insights from this data. 2.3 Importance of Big Data in IoT Applications There are several use cases of the IoT where processing large amounts of data is essential. It plays a critical role in IoT applications, providing businesses with valuable insights that can be used to optimize processes, reduce costs, and improve overall efficiency. By collecting and analyzing large amounts of data from IoT devices, businesses can gain a better understanding of customer behavior, machine performance, and other critical metrics. For example, big data in IoT can be used to identify patterns in customer behavior, allowing businesses to tailor their marketing efforts and improve customer engagement. Additionally, IoT devices can be used to collect data on machine performance, allowing businesses to identify potential problems before they occur, minimize downtime, and optimize maintenance schedules. The value of big data in IoT applications lies in its ability to provide businesses with real-time insights that can be used to drive growth, reduce costs, and improve overall efficiency. 3. The Value of Big Data and IoT for Businesses Businesses looking to integrate big data in IoT must first consider their data storage and analytics capabilities. By understanding the value of big data technology in capturing and analyzing IoT-generated data, businesses can unlock insights that can help them make better decisions, optimize processes, and create new business opportunities. 3.1 Improved Decision-making for Businesses IoT and big data technologies offer businesses a wealth of data that can be used to make better-informed decisions. By integrating IoT sensors and devices with their operations, businesses can collect real-time data on customer behavior, operational performance, and market trends. This data can then be analyzed using big data analytics tools to generate valuable insights that can inform decision-making. For example, operational data can be analyzed to identify inefficiencies and areas for optimization, helping businesses reduce costs and improve efficiency. With the right data storage and analytics capabilities, businesses can leverage the power of IoT and big data to gain a competitive advantage and make better-informed decisions that drive growth and success. 3.2 Generate New Revenue Streams By leveraging the vast amount of data generated by IoT devices and analyzing it with big data analytics tools, businesses can gain insights into customer behavior, market trends, and operational performance. These insights can be used to create new revenue streams and business models, such as subscription-based services, pay-per-use models, and predictive maintenance services. For example, IoT sensors can be used to collect data on equipment performance, allowing businesses to offer predictive maintenance services that help prevent equipment breakdowns and reduce downtime. Similarly, customer data can be analyzed to identify new revenue opportunities, such as personalized product recommendations and targeted advertising. With the right strategy and investment in IoT and big data technologies, businesses can unlock new revenue streams and create innovative business models that drive growth and success. 4. Final Thoughts Big data in IoT is becoming increasingly important for businesses, and the future prospects are bright. As IoT continues to grow and generate more data, businesses that can effectively analyze it will gain a competitive advantage, leading to increased efficiency, reduced costs, and higher ROI. To fully realize the benefits of IoT, businesses must develop big data analytics and IoT devices in tandem, creating a feedback loop that drives continuous improvement and growth. By embracing these technologies, businesses can make data-driven decisions and unlock new insights that will help them thrive in the years ahead.

Read More

How Will the Emergence of 5G Affect Federated Learning?

Article | April 10, 2020

As development teams race to build out AI tools, it is becoming increasingly common to train algorithms on edge devices. Federated learning, a subset of distributed machine learning, is a relatively new approach that allows companies to improve their AI tools without explicitly accessing raw user data. Conceived by Google in 2017, federated learning is a decentralized learning model through which algorithms are trained on edge devices. In regard to Google’s “on-device machine learning” approach, the search giant pushed their predictive text algorithm to Android devices, aggregated the data and sent a summary of the new knowledge back to a central server. To protect the integrity of the user data, this data was either delivered via homomorphic encryption or differential privacy, which is the practice of adding noise to the data in order to obfuscate the results.

Read More

Spotlight

Antenova M2M

Antenova M2M is a leading provider of high performing standard antennas and radio antenna modules for wireless M2M and consumer electronic devices. Antenova M2M’s market proven gigaNOVA® range of standard antennas and RADIONOVA® RF antenna solutions are ideally suited for a broad range of wireless connectivity requirements, including GSM and CDMA, 3G, 4G, LTE, GPS, Wi-Fi®, Bluetooth®, ISM, WiMAX™, ZigBee® and FM.

Related News

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Ceva Extends its Connect IP Portfolio with Wi-Fi 7 Platform for High-End Consumer and Industrial IoT

Ceva, Inc. | January 05, 2024

Ceva, Inc. (NASDAQ: Ceva), the leading licensor of silicon and software IP that enables Smart Edge devices to connect, sense and infer data more reliably and efficiently, today announced the general release of its next generation RivieraWaves Wi-Fi 7 IP platform, further expanding its widely-licensed portfolio of connectivity IP, targeting high-end consumer and industrial applications including gateways, TVs, set-top-boxes, streaming media devices, AR/VR headsets, personal computing and smartphones. The RivieraWaves Wi-Fi 7 IP leverages all the latest advanced features of the IEEE 802.11be standard to deliver a premium high performance, cost- and power-optimized Wi-Fi solution for integration into the next wave of Wi-Fi Access Point (AP) and Station (STA) products. According to global technology intelligence firm ABI Research, annual Wi-Fi enabled chipset shipments will exceed 5.1 billion by 2028, with more than 1.7 billion of these chipsets supporting the Wi-Fi 7 standard. As Wi-Fi enabled device shipments continue to grow, increasing numbers of semiconductor companies and OEMs are choosing to integrate Wi-Fi connectivity into their chip designs, and need access to high quality Wi-Fi IP to reduce the development costs and risks. Spanning Wi-Fi 4/5/6 over the past decade, Ceva has already established a considerable leadership position in Wi-Fi IP licensing, with more than 40 licensees for its RivieraWaves Wi-Fi 6 IP family, serving a wide range of end markets and applications, from end points to access points, across the IoT sphere. Expanding on this leadership position, Ceva's RivieraWaves Wi-Fi 7 IP provides a unique, comprehensive 802.11be MAC and PHY solution for integration into the next generation of Wi-Fi SoC products. Andrew Zignani, Senior Research Director, ABI Research, commented: "Ceva's wireless connectivity IPs play an integral role in the proliferation of connectivity standards in the broad IoT markets, as is evident from their customer's success in shipping more than 1 billion connectivity chips annually. With the introduction of their RivieraWaves Wi-Fi 7 IP platforms, semiconductor companies and OEMs have a trusted partner to develop differentiated, high-performance Wi-Fi 7 chipsets for their connectivity roadmaps, with lower risk and a lower cost of ownership." Tal Shalev, Vice President and General Manager of the Wireless IoT BU at Ceva, stated: "The relentless expansion of Wi-Fi usage has pushed the Wi-Fi 7 standard to offer enhanced data throughput, improved latency and support more spectrum in the face of mounting network congestion. Achieving this requires highly complex, cutting-edge functionalities like 4K QAM modulation, Multi Link Operation and Multi Resource Unit to optimize link efficiency across the available bands. Our RivieraWaves Wi-Fi 7 IP platform incorporates all the features of this latest-generation, wireless standard, dramatically simplifying development and time-to-market for companies looking to add Wi-Fi 7 connectivity to their products." Wi-Fi 7's 4K QAM modulation scheme is a substantial increase on the previous 1K QAM of Wi-Fi 6, while Multi Link Operation (MLO) introduces dynamic channel aggregation, seamlessly combining heterogenous channels from the same or different bands to navigate interference and boost throughput. Similarly, Multi Resource Units (MRU) enables the creation of larger channel bandwidths by intelligently stitching together punctured or disjointed Resource Units within the same band. The outcome is not only a remarkable up to 5 times increase in raw speeds but also significantly reduced latency, thanks to diminished contentions and retries. About Ceva, Inc. At Ceva, we are passionate about bringing new levels of innovation to the smart edge. Our wireless communications, sensing and Edge AI technologies are at the heart of some of today's most advanced smart edge products. From Bluetooth connectivity, Wi-Fi, UWB and 5G platform IP for ubiquitous, robust communications, to scalable Edge AI NPU IPs, sensor fusion processors and embedded application software that make devices smarter, we have the broadest portfolio of IP to connect, sense and infer data more reliably and efficiently. We deliver differentiated solutions that combine outstanding performance at ultra-low power within a very small silicon footprint. Our goal is simple – to deliver the silicon and software IP to enable a smarter, safer, and more interconnected world. This philosophy is in practice today, with Ceva powering more than 17 billion of the world's most innovative smart edge products from AI-infused smartwatches, IoT devices and wearables to autonomous vehicles and 5G mobile networks. Our headquarters are in Rockville, Maryland with a global customer base supported by operations worldwide. Our employees are among the leading experts in their areas of specialty, consistently solving the most complex design challenges, enabling our customers to bring innovative smart edge products to market.

Read More

Industrial IoT

Energous and InPlay Launch Low Maintenance Wireless Sensors for IoT industrial Applications

Business Wire | September 27, 2023

Energous Corporation (NASDAQ: WATT), an industry leader in RF-based wireless power network solutions, has partnered with InPlay Inc., a fabless semiconductor company dedicated to engineering advanced low-power wireless communication technologies for the Industrial IoT market, to demonstrate a battery-free temperature and humidity IoT sensor solution. This innovation harnesses the strengths of Energous' PowerBridge technology and InPlay's cutting-edge Bluetooth low-energy beacon system. This solution has the potential to expand into multiple markets within the Industrial IoT ecosystem that Energous is currently focusing on. This collaborative endeavor aims to offer these industries a reliable, cost-effective, and energy-efficient sensor solution. As IoT expands, particularly within industrial applications, the need to retrofit costly sensor solutions becomes evident. By eliminating cables, removing disposable batteries, and cutting down maintenance costs, we can significantly reduce overall expenses and help deploy sensors at a much larger scale, stated Cesar Johnston, CEO of Energous. Our PowerBridge technology delivers consistent power to multiple devices simultaneously, offering greater design flexibility, waterproofing capabilities, and alleviating power-related challenges. “Energous PowerBridge technology enables wireless power transmission with minimal size and maximum power and cost efficiency,” said Jason Wu, CEO of InPlay. “Our InPlay NanoBeacon SoC solution benefits wireless sensors customers by providing ultra-low-cost, low-power and a programming free design where manufacturers are able to cut down on development costs and achieve a shorter time to market.” Energous and InPlay will be at the Wireless IoT Tomorrow in Wiesbaden (near Frankfurt airport), Germany from October 18-19, 2023. To schedule a demo at the event, please visit https://energous.com/schedule-a-demo/ or stop by the Energous booth #1 or the InPlay booth #6. About Energous Corporation Energous Corporation (NASDAQ: WATT) has been pioneering wireless charging over distance technology since 2012. Today, as the global leader in wireless charging over distance, its networks are safely and seamlessly powering its customers’ RF-based systems in a variety of industries, including retail, industrial, healthcare and more. Its total network solution is designed to support a variety of applications, including inventory and asset tracking, smart manufacturing, electronic shelf labels, IoT sensors, digital supply chain management, inventory management, loss prevention, patient/people tracking and sustainability initiatives. The number of industries and applications it serves is rapidly growing as it works to support the next generation of the IoT ecosystem.

Read More

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Ceva Extends its Connect IP Portfolio with Wi-Fi 7 Platform for High-End Consumer and Industrial IoT

Ceva, Inc. | January 05, 2024

Ceva, Inc. (NASDAQ: Ceva), the leading licensor of silicon and software IP that enables Smart Edge devices to connect, sense and infer data more reliably and efficiently, today announced the general release of its next generation RivieraWaves Wi-Fi 7 IP platform, further expanding its widely-licensed portfolio of connectivity IP, targeting high-end consumer and industrial applications including gateways, TVs, set-top-boxes, streaming media devices, AR/VR headsets, personal computing and smartphones. The RivieraWaves Wi-Fi 7 IP leverages all the latest advanced features of the IEEE 802.11be standard to deliver a premium high performance, cost- and power-optimized Wi-Fi solution for integration into the next wave of Wi-Fi Access Point (AP) and Station (STA) products. According to global technology intelligence firm ABI Research, annual Wi-Fi enabled chipset shipments will exceed 5.1 billion by 2028, with more than 1.7 billion of these chipsets supporting the Wi-Fi 7 standard. As Wi-Fi enabled device shipments continue to grow, increasing numbers of semiconductor companies and OEMs are choosing to integrate Wi-Fi connectivity into their chip designs, and need access to high quality Wi-Fi IP to reduce the development costs and risks. Spanning Wi-Fi 4/5/6 over the past decade, Ceva has already established a considerable leadership position in Wi-Fi IP licensing, with more than 40 licensees for its RivieraWaves Wi-Fi 6 IP family, serving a wide range of end markets and applications, from end points to access points, across the IoT sphere. Expanding on this leadership position, Ceva's RivieraWaves Wi-Fi 7 IP provides a unique, comprehensive 802.11be MAC and PHY solution for integration into the next generation of Wi-Fi SoC products. Andrew Zignani, Senior Research Director, ABI Research, commented: "Ceva's wireless connectivity IPs play an integral role in the proliferation of connectivity standards in the broad IoT markets, as is evident from their customer's success in shipping more than 1 billion connectivity chips annually. With the introduction of their RivieraWaves Wi-Fi 7 IP platforms, semiconductor companies and OEMs have a trusted partner to develop differentiated, high-performance Wi-Fi 7 chipsets for their connectivity roadmaps, with lower risk and a lower cost of ownership." Tal Shalev, Vice President and General Manager of the Wireless IoT BU at Ceva, stated: "The relentless expansion of Wi-Fi usage has pushed the Wi-Fi 7 standard to offer enhanced data throughput, improved latency and support more spectrum in the face of mounting network congestion. Achieving this requires highly complex, cutting-edge functionalities like 4K QAM modulation, Multi Link Operation and Multi Resource Unit to optimize link efficiency across the available bands. Our RivieraWaves Wi-Fi 7 IP platform incorporates all the features of this latest-generation, wireless standard, dramatically simplifying development and time-to-market for companies looking to add Wi-Fi 7 connectivity to their products." Wi-Fi 7's 4K QAM modulation scheme is a substantial increase on the previous 1K QAM of Wi-Fi 6, while Multi Link Operation (MLO) introduces dynamic channel aggregation, seamlessly combining heterogenous channels from the same or different bands to navigate interference and boost throughput. Similarly, Multi Resource Units (MRU) enables the creation of larger channel bandwidths by intelligently stitching together punctured or disjointed Resource Units within the same band. The outcome is not only a remarkable up to 5 times increase in raw speeds but also significantly reduced latency, thanks to diminished contentions and retries. About Ceva, Inc. At Ceva, we are passionate about bringing new levels of innovation to the smart edge. Our wireless communications, sensing and Edge AI technologies are at the heart of some of today's most advanced smart edge products. From Bluetooth connectivity, Wi-Fi, UWB and 5G platform IP for ubiquitous, robust communications, to scalable Edge AI NPU IPs, sensor fusion processors and embedded application software that make devices smarter, we have the broadest portfolio of IP to connect, sense and infer data more reliably and efficiently. We deliver differentiated solutions that combine outstanding performance at ultra-low power within a very small silicon footprint. Our goal is simple – to deliver the silicon and software IP to enable a smarter, safer, and more interconnected world. This philosophy is in practice today, with Ceva powering more than 17 billion of the world's most innovative smart edge products from AI-infused smartwatches, IoT devices and wearables to autonomous vehicles and 5G mobile networks. Our headquarters are in Rockville, Maryland with a global customer base supported by operations worldwide. Our employees are among the leading experts in their areas of specialty, consistently solving the most complex design challenges, enabling our customers to bring innovative smart edge products to market.

Read More

Industrial IoT

Energous and InPlay Launch Low Maintenance Wireless Sensors for IoT industrial Applications

Business Wire | September 27, 2023

Energous Corporation (NASDAQ: WATT), an industry leader in RF-based wireless power network solutions, has partnered with InPlay Inc., a fabless semiconductor company dedicated to engineering advanced low-power wireless communication technologies for the Industrial IoT market, to demonstrate a battery-free temperature and humidity IoT sensor solution. This innovation harnesses the strengths of Energous' PowerBridge technology and InPlay's cutting-edge Bluetooth low-energy beacon system. This solution has the potential to expand into multiple markets within the Industrial IoT ecosystem that Energous is currently focusing on. This collaborative endeavor aims to offer these industries a reliable, cost-effective, and energy-efficient sensor solution. As IoT expands, particularly within industrial applications, the need to retrofit costly sensor solutions becomes evident. By eliminating cables, removing disposable batteries, and cutting down maintenance costs, we can significantly reduce overall expenses and help deploy sensors at a much larger scale, stated Cesar Johnston, CEO of Energous. Our PowerBridge technology delivers consistent power to multiple devices simultaneously, offering greater design flexibility, waterproofing capabilities, and alleviating power-related challenges. “Energous PowerBridge technology enables wireless power transmission with minimal size and maximum power and cost efficiency,” said Jason Wu, CEO of InPlay. “Our InPlay NanoBeacon SoC solution benefits wireless sensors customers by providing ultra-low-cost, low-power and a programming free design where manufacturers are able to cut down on development costs and achieve a shorter time to market.” Energous and InPlay will be at the Wireless IoT Tomorrow in Wiesbaden (near Frankfurt airport), Germany from October 18-19, 2023. To schedule a demo at the event, please visit https://energous.com/schedule-a-demo/ or stop by the Energous booth #1 or the InPlay booth #6. About Energous Corporation Energous Corporation (NASDAQ: WATT) has been pioneering wireless charging over distance technology since 2012. Today, as the global leader in wireless charging over distance, its networks are safely and seamlessly powering its customers’ RF-based systems in a variety of industries, including retail, industrial, healthcare and more. Its total network solution is designed to support a variety of applications, including inventory and asset tracking, smart manufacturing, electronic shelf labels, IoT sensors, digital supply chain management, inventory management, loss prevention, patient/people tracking and sustainability initiatives. The number of industries and applications it serves is rapidly growing as it works to support the next generation of the IoT ecosystem.

Read More

Events