Edge processing: How Qualcomm is helping build the industrial IoT

The Internet of Things (IoT) is stretching beyond our bodies, homes, and vehicles to include things never-before networked: equipment, machines, sensors, and more. As the industrial IoT (IIoT) expands, connecting everything everywhere, a continuous stream of data is being generated a whole lot of it. Cisco predicts that there will be more than 3X as much cloud traffic in 2020 (14.1ZB), compared to 2015 (2.9ZB). Because some of that data can’t and shouldn’t be sent to the cloud, manufacturers are looking to edge processing for alternative solutions. And that’s where Qualcomm Technologies comes in.

Spotlight

Amazon

Amazon is guided by four principles: customer obsession rather than competitor focus, passion for invention, commitment to operational excellence, and long-term thinking. We are driven by the excitement of building technologies, inventing products, and providing services that change lives. We embrace new ways of doing things, make decisions quickly, and are not afraid to fail. We have the scope and capabilities of a large company, and the spirit and heart of a small one.

OTHER ARTICLES
Industrial IoT, IoT Security

Securing Real-world IoT Applications through Penetration Testing

Article | July 12, 2023

Enhancing IoT security: Unveiling the significance of penetration testing in securing real-world IoT applications, identifying vulnerabilities, and mitigating risks for the protection of IoT data. Contents 1. Introduction to IoT Application Security and Penetration Testing 1.1 Vulnerabilities of IoT application security 2. Fundamentals of IoT Penetration Testing 3. Considerations for IoT Penetration Testing 4. Methodologies and Approaches for IoT Penetration Testing 5. Takeaway 1. Introduction to IoT Application Security and Penetration Testing Securing real-world IoT applications is paramount as the Internet of Things (IoT) permeates various aspects of any individuals lives. Penetration testing serves as a vital tool in identifying vulnerabilities and assessing the resilience of IoT systems against cyber threats. In this article, delve into the significance of penetration testing in securing IoT applications, exploring its role in identifying weaknesses, mitigating risks, and ensuring the integrity and confidentiality of IoT data. 1.1 Vulnerabilities of IoT application security Expanded Attack Surface: The proliferation of IoT devices has dramatically expanded the attack surface, increasing the potential for security breach enterprise networks. With billions of interconnected devices, each presenting a potential vulnerability, the risk of unauthorized access, data breaches, and other security incidents is significantly heightened. Risks: IoT devices often possess limited computational resources, making them susceptible to software and firmware vulnerabilities. Their resource-constrained nature can limit the implementation of robust security measures, leaving them exposed to potential attacks. Furthermore, a significant concern is the prevalence of default or weak credentials on these devices. Diverse Threat Landscape: The threat landscape surrounding IoT devices is extensive and ever-evolving. It encompasses various attack vectors, including malware, botnets, DDoS attacks, physical tampering, and data privacy breaches. One notable example is the Mirai botnet, which compromised a vast number of IoT devices to launch large-scale DDoS attacks, leading to significant disruptions in internet services. In addition, IoT devices can serve as entry points for infiltrating larger networks and systems, allowing attackers to pivot and gain control over critical infrastructure. Botnets: IoT devices can be infected with malware and become part of a botnet, which can be used for various malicious activities. Botnets are often utilized to launch distributed denial-of-service (DDoS) attacks, where a network of compromised devices overwhelms a target system with traffic, causing it to become inaccessible. Ransomware: IoT devices are also vulnerable to ransomware attacks. Ransomware is malicious software that encrypts the data on a device and demands a ransom payment in exchange for the decryption key. Data Breaches: IoT devices can be targeted to steal sensitive data, including personal identifiable information (PII) or financial data. Due to inadequate security measures, such as weak authentication or unencrypted data transmissions, attackers can exploit IoT devices as entry points to gain unauthorized access to networks and systems. 2. Fundamentals of IoT Penetration Testing IoT penetration testing, also known as ethical hacking or security assessment, is a critical process for testing and identifying vulnerabilities and assessing the security posture of IoT devices, networks, and applications. It involves simulating real-world attacks to uncover weaknesses and provide insights for remediation. IoT penetration testing involves identifying vulnerabilities, conducting targeted attacks, and evaluating the effectiveness of security controls in IoT systems. IoT pen-testing aims to proactively identify and address potential weaknesses that malicious actors could exploit. The methodology of IoT pen-testing typically follows a structured approach. It begins with attack surface mapping, which involves identifying all potential entry and exit points that an attacker could leverage within the IoT solution. This step is crucial for understanding the system's architecture and potential vulnerabilities. Pentesters spend considerable time gathering information, studying device documentation, analyzing communication protocols, and assessing the device's hardware and software components. Once the attack surface is mapped, the following steps involve vulnerability identification and exploitation. This includes conducting security tests, exploiting vulnerabilities, and evaluating the system's resilience to attacks. The penetration testers simulate real-world attack scenarios to assess the device's ability to withstand threats. After exploitation, post-exploitation activities are performed to determine the extent of the compromise and evaluate the potential impact on the device and the overall IoT ecosystem. Finally, a detailed technical report summarizes the findings, vulnerabilities, and recommendations for improving the device's security. 3. Considerations for IoT Penetration Testing Fuzzing and Protocol Reverse Engineering: Employ advanced techniques like fuzzing to identify vulnerabilities in communication protocols used by IoT devices. Fuzzing involves sending malformed or unexpected data to inputs and analyzing the system's response to uncover potential weaknesses. Radio Frequency (RF) Analysis: Perform RF analysis to identify weaknesses in wireless communication between IoT devices. This includes analyzing RF signals, monitoring wireless communication protocols, and identifying potential vulnerabilities such as replay attacks or unauthorized signal interception. Red Team Exercises: Conduct red team exercises to simulate real-world attack scenarios and evaluate the organization's detection and response capabilities. Red team exercises go beyond traditional penetration testing by emulating the actions and techniques of skilled attackers. This helps uncover any weaknesses in incident response, detection, and mitigation processes related to IoT security incidents. Embedded System Analysis: Gain expertise in analyzing and reverse engineering embedded systems commonly found in IoT devices. This includes understanding microcontrollers, debugging interfaces, firmware extraction techniques, and analyzing the device's hardware architecture. Embedded system analysis helps identify low-level vulnerabilities and potential attack vectors. Zero-Day Vulnerability Research: Engage in zero-day vulnerability research to identify previously unknown vulnerabilities in IoT devices and associated software. This requires advanced skills in vulnerability discovery, exploit development, and the ability to responsibly disclose vulnerabilities to vendors. 4. Methodologies and Approaches for IoT Penetration Testing Mobile, Web and Cloud Application Testing Mobile, web, and cloud application testing is integral to IoT penetration testing, focusing on assessing the security of applications that interact with IoT devices. This methodology involves various steps to evaluate the security of these applications across different platforms. For mobile applications, the methodology includes reviewing the binary code, conducting reverse engineering to understand the inner workings, and analyzing the file system structure. Sensitive information such as keys and certificates embedded within the mobile app are scrutinized for secure storage and handling. The assessment extends to examining the application's resistance to unauthorized modifications. In web applications, the testing covers common vulnerabilities like cross-site scripting (XSS), insecure direct object references (IDOR), and injection attacks. Application reversing techniques are employed to gain insights into the application's logic and potential vulnerabilities. Additionally, hardcoded API keys are identified and assessed for their security implications. Firmware Penetration Testing Firmware penetration testing is a crucial aspect of IoT security assessments, aiming to identify vulnerabilities within the firmware running on IoT devices. The methodology encompasses multiple steps to uncover weaknesses. The process begins with binary analysis, dissecting the firmware to understand its structure, functionality, and potential vulnerabilities. Reverse engineering techniques are applied to gain deeper insights into the firmware's inner workings, exposing potential weaknesses like hardcoded credentials or hidden functionality. The analysis extends to examining different file systems used in the firmware and evaluating their configurations and permissions. Sensitive keys, certificates, and cryptographic material embedded within the firmware are scrutinized for secure generation, storage, and utilization. Additionally, the resistance of the firmware to unauthorized modification is assessed, including integrity checks, secure boot mechanisms, and firmware update processes. IoT Device Hardware Pentest IoT device hardware penetration testing involves a systematic methodology to assess the security of IoT devices at the hardware level. This comprehensive approach aims to identify vulnerabilities and weaknesses that attackers could exploit. The methodology includes analyzing internal communication protocols like UART, I2C, and SPI to understand potential attack vectors. Open ports are examined to evaluate the security controls and risks associated with communication interfaces. The JTAG debugging interface is explored to gain low-level access and assess the device's resistance to unauthorized access. Extracting firmware from EEPROM or FLASH memory allows testers to analyze the code, configurations, and security controls. Physical tampering attempts are made to evaluate the effectiveness of the device's physical security measures. 5. Takeaway Penetration testing is crucial in securing real-world IoT applications, enabling organizations to identify vulnerabilities and mitigate risks effectively. By conducting comprehensive and regular penetration tests, organizations can proactively identify and address security weaknesses, ensuring the integrity and confidentiality of IoT data. With the ever-growing threat landscape and increasing reliance on IoT technologies, penetration testing has become indispensable to safeguard IoT applications and protect against potential cyber-attacks. Several key factors will shape the future of IoT penetration testing. First, the increasing complexity of IoT systems will require testing methodologies to adapt and assess intricate architectures, diverse protocols, and a wide range of devices. Second, there will be a greater emphasis on security by design, with penetration testing focusing on verifying secure coding practices, robust access controls, and secure communication protocols. Third, supply chain security will become crucial, necessitating penetration testing to assess the security measures implemented by vendors, third-party components, and firmware updates. Fourth, integrating IoT penetration testing with DevSecOps practices will ensure continuous monitoring and improvement of IoT system security. Lastly, as attackers become more sophisticated, future IoT penetration testing methodologies will need to keep pace with evolving IoT-specific attack techniques. By embracing these advancements, IoT penetration testing will play a vital role in ensuring the security and privacy of IoT deployments.

Read More
IoT Security

Understanding IoT Data Protocols: Why Do They Matter for IoT Data?

Article | October 11, 2023

Learn more about IoT data protocols and what makes them essential for a cohesive IoT ecosystem. This article will provide a detailed view of data protocols and their importance for modern businesses. 1 Significance of IoT Data Protocols for Business Operations IoT ecosystems form an integral part of many businesses today, and IoT data protocols serve as the foundation for seamless communication and data exchange between connected devices. IoT protocols ensure the integrity and reliability of data, empowering businesses to make informed decisions, optimize operations, enhance productivity, and drive innovation. With standardized and secure IoT protocols and standards, companies can achieve efficient data transmission and allow for scalability across diverse IoT ecosystems. Understanding and leveraging the right protocols is essential for businesses to benefit from the full potential of their IoT investments and gain a competitive edge in today's interconnected world. 2 Understanding IoT Data Protocols IoT data protocols are standardized rules and formats that ensure efficient and secure data transmission for efficient IoT communication. By adhering to established protocols such as MQTT, CoAP, and AMQP, businesses can maintain interoperability, scalability, and robust data transmission of IoT data, ensuring efficient data storage and management for their IoT ecosystem. This, in turn, empowers organizations to monitor and control critical processes in real-time and make informed decisions. 2.1 Role of IoT Data Protocols in the IoT Ecosystem The seamless functioning of an organization's IoT ecosystem relies on the pivotal role played by IoT data protocols. These protocols, serving as the communication backbone, enable secure transfer and efficient data processing, thereby facilitating the seamless exchange of information within the IoT network. Consequently, businesses operating within the IoT sphere can harness the power of reliable data communication enabled by these protocols to unlock insights that drive innovation. IoT data protocols serve as the vital link that fuels the interconnected landscape of IoT devices, elevating the efficiency and efficacy of businesses as they navigate the complex web of IoT technologies and leverage its immense potential. 2.2 Overview of Common IoT Data Protocols The IoT data protocols come with their own set of applications and challenges. Understanding each protocol's individual use cases will help businesses set up and scale their IoT device ecosystems. MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight and efficient protocol designed for low-power devices and unreliable networks. It uses a publish-subscribe model, making it ideal for IoT applications where bandwidth and power consumption are crucial factors, such as remote monitoring and control systems. CoAP (Constrained Application Protocol): For resource-constrained IoT devices, CoAP is designed to enable smooth communication over the Internet. It uses a client-server model and is suitable for IoT applications where devices have limited processing power and memory, such as smart home automation, environmental monitoring, and healthcare systems. HTTP (Hypertext Transfer Protocol): Although primarily designed for web applications, HTTP is also used in IoT systems for data transmission. The ubiquity and familiarity of HTTP make it a widely supported communication protocol. As a result, it is suitable for IoT devices that require high-level interoperability in applications that involve cloud integration, data analytics, and web-based control interfaces. AMQP (Advanced Message Queuing Protocol): AMQP is a flexible messaging protocol ensuring reliable, secure, and interoperable communication between IoT devices and back-end systems. It supports both publish-subscribe and point-to-point messaging models, making it suitable for IoT scenarios involving complex routing, large-scale deployments, and enterprise integrations. Zigbee: Zigbee is a wireless protocol designed specifically for low-power, short-range communication in IoT networks. It operates on the IEEE 802.15.4 standard and is known for its energy efficiency and mesh networking capabilities, leading to its widespread adoption in home automation, intelligent lighting, and industrial control systems. 3 Considerations for Choosing the Right IoT Data Protocol Selecting a suitable IoT data protocol is essential to maintain smooth interoperability and a unified IoT ecosystem. Compatibility with existing infrastructure is crucial for seamless integration and cost-effective implementation. Security measures must also be robust to protect sensitive data from unauthorized access and potential breaches. Additionally, scalable and flexible data protocols in IoT are vital to accommodate future growth and evolving business requirements. Furthermore, the protocol's reliability and efficiency in transmitting data should align with the use case of IoT systems. Finally, considering the protocol's industry adoption and standardization level will also help minimize risks and enhance interoperability. 4 In Summary IoT data protocols play a significant role in facilitating efficient and secure business operations within the IoT ecosystem. By learning more about the use cases of the most common protocols in the industry, businesses can consider factors such as compatibility, security, scalability, and reliability while choosing the most suitable option for their business. As IoT systems grow, more complex and reliable data protocols will emerge, paving the way for enhanced connectivity, interoperability, and transformative opportunities across various industries.

Read More
IoT Security

Connected Fleet Management: Why a Unified Network is Key

Article | July 5, 2023

As consumer demands evolve, fleet managers are turning to IoT to deliver products faster and more efficiently. The progress being made in edge computing represents the full potential of IoT: the power of data on the move. However, operating on the edge also reveals some of IoT’s greatest challenges: maintaining network security as the number of endpoints multiplies; rethinking traditional business models as industries become increasingly interdependent; and, perhaps most importantly, establishing a seamless, reliable network across borders, cultures, and regulatory environments.

Read More
Enterprise Iot

How to Secure Your Network with Zero Trust Security for IoT?

Article | July 19, 2022

The concept of "never trust, always verify" is the foundation of the relatively new security architecture known as "zero trust." Zero trust requires that all users and devices be verified every time they connect, even from inside the "moat," in contrast to the conventional castle-and-moat security architecture, which automatically trusts users and devices located within a network's perimeter. Companies are being forced to reconsider how they safeguard their networks by the internet of things (IoT). Unmanaged smart gadgets connected to the internet expand the number of potential access points for hackers to compromise your security when they are added to a network. Zero Trust Security Expansion for IoT After establishing it for users and their devices, organizations must extend zero-trust security to cover unmanaged, non-user devices too. To do this, they require zero trust identity management technologies that automatically register devices, issue credentials, and offer password-less authentication. Device Visibility A device may be infected with malware or have a security breach if performance problems or bugs start to appear frequently. In addition, a malfunctioning device may be more vulnerable to attack. Therefore, organizations require device health monitoring that can automatically identify problems and flag them for remedy in order to establish and maintain zero trust security for IoT. Some cutting-edge solutions can also automatically prevent an impacted device from making further connection attempts or carrying out corrective actions without requiring human participation. The Principle of Least Privilege (PoLP) The principle of least privilege (PoLP), which argues that any user or device should only obtain the bare minimum access privileges necessary to perform their job functions, is widely used in conjunction with zero trust security. Therefore, organizations must establish the minimal level of network access required for each device to carry out its functions before limiting its potential privileges in order to deploy PoLP for IoT. Implementing identity and access management (IAM) tools and guidelines that support zero trust and PoLP for devices is one approach to accomplishing this. Security Monitoring There are other zero-trust security monitoring programs created especially for IoT, such as Palo Alto Networks' IoT Security, which was previously discussed. Businesses can also utilize tools to monitor devices and network traffic, such as next-generation firewalls and intrusion detection and prevention systems (IDS/IPS). The zero trust security solution for IoT must include monitoring in addition to as much automation as possible so that threats can be identified, contained, and remedied even when no one is there to press a button or disconnect a device manually. One of the leading causes of zero trust security projects failing over time is that people stop adhering to them once they get complicated. This is especially true for IoT security that operates on zero trust. In addition, it can be logistically challenging to keep remote, unmanaged devices at zero trust.

Read More

Spotlight

Amazon

Amazon is guided by four principles: customer obsession rather than competitor focus, passion for invention, commitment to operational excellence, and long-term thinking. We are driven by the excitement of building technologies, inventing products, and providing services that change lives. We embrace new ways of doing things, make decisions quickly, and are not afraid to fail. We have the scope and capabilities of a large company, and the spirit and heart of a small one.

Related News

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Comcast and Broadcom to Develop the World’s First AI-Powered Access Network With Pioneering New Chipset

Business Wire | October 23, 2023

Comcast and Broadcom today announced joint efforts to develop the world’s first AI-powered access network with a new chipset that embeds artificial intelligence (AI) and machine learning (ML) within the nodes, amps and modems that comprise the last few miles of Comcast’s network. With these new capabilities broadly deployed throughout the network, Comcast will be able to transform its operations by automating more network functions and deliver an improved customer experience through better and more actionable intelligence. Additionally, the new chipset will be the first in the world to incorporate DOCSIS 4.0 Full Duplex (FDX), Extended Spectrum (ESD) and the ability to run both simultaneously, enabling Internet service providers across the globe to deliver DOCSIS 4.0 services using a toolkit with technology options to meet their business needs. DOCSIS 4.0 is the next-generation network technology that will introduce symmetrical multi-gigabit Internet speeds, lower latency, and even better security and reliability to hundreds of millions of people and businesses over their existing connections without the need for major construction of new network infrastructure. On October 12, Comcast announced that it will begin to introduce the first customers in the world to Internet services powered by DOCSIS 4.0 using FDX. While the company will continue to leverage FDX, the collaboration with Broadcom will provide Comcast and other operators with additional options in the pursuit of delivering the best possible connectivity experience. The Xfinity 10G Network leverages the latest advancements in edge compute, digital optics and real-time, actionable telemetry to meet and exceed our customers’ constantly evolving connectivity needs, said Elad Nafshi, Chief Network Officer, Comcast Cable. With this new Unified DOCSIS4 chipset from Broadcom, we can broadly deploy transformational AI network capabilities alongside symmetrical multi-gig speeds. FDX is the best technology for Comcast, but this groundbreaking unified chipset will provide the entire industry with options when upgrading their nodes, amps, and cable modems for DOCSIS 4.0. The new end-to-end chipsets will be the industry’s first to incorporate AI and ML capabilities that will transform the operations and customer experience functions by: Making smarter network performance decisions using network diagnostics insights produced by both local and cloud AI. Enhanced monitoring and issue detection using bandwidth-efficient telemetry data. Transforming network maintenance of the network using real time issue localization plus predictive and self-healing network intelligence. Protecting network facilities and customers with improved cybersecurity intrusion detection. Assisting customers more effectively through local and cloud-based AI. Monitoring home IoT devices for connectivity disruptions. All these capabilities, and more, are achieved while reducing network latency and insulating customer data to ensure the utmost privacy standards. “By enabling a toolkit that includes FDX, ESD or both simultaneously, this new Unified DOCSIS4 chipset incorporates the advantages of both technologies and will enable economies of scale as well as a common retail modem for the industry,” said Rich Nelson, Senior Vice President and General Manager, Broadband Video Group, Broadcom. “The edge network and in-home capabilities of this chipset will improve network intelligence and reliability to create an improved broadband experience with enhanced privacy protection and cyber security for the consumer.” Comcast and Broadcom are designing and building the new chipset based upon CableLabs’ DOCSIS 4.0 specifications. The companies have a history of working together to introduce innovations that have pushed the industry to the next generation of connectivity. In 2021, Comcast conducted the world’s first full duplex multi-gigabit symmetrical test on Broadcom-built silicon. In January 2022 the companies tested the first Full Duplex DOCSIS 4.0 system-on-chip (SoC) cable modem that delivered symmetrical speeds faster than 4 Gbps. Later that year, Comcast successfully tested the final technical component of necessary to deliver multi-gig symmetrical speed powered by DOCSIS 4.0 throughout its network with 10G smart amps built on a Broadcom-developed reference design. The companies expect to begin trials early in 2024 and to begin deploying the new chipset in live networks before the end of the same year.

Read More

Enterprise Iot

Tavant Unveils Data Beats™: A Data-Driven Ecosystem Built for Fintechs and Financial Institutions to Harness Data Insights

Business Wire | October 20, 2023

Tavant, Silicon Valley’s leading digital lending solutions provider, today announced at the MBA's Annual Convention & Expo in Philadelphia, the launch of Data Beats™, a groundbreaking data platform that promises to redefine the financial services landscape. Built to inform, provide insights, act, recommend, and predict, Data Beats ushers in a new era of data-driven intelligence for the industry. This versatile platform empowers businesses to harness the power of their data and maximize its value, effectively taking the stress out of data management. Key benefits of Data Beats include: Provides actionable data insights that work for your business; Analyzes data from various aspects of your operations; Adapts and learns from your data to provide real-time recommendations; and Looks into the future, learns and predicts trends. Data Beats is a platform offering within Tavant's banking and financial services suite of technology products. Data Beats is set to serve as the analytics and IoT engine for the financial services industry, initially focusing on mortgage and home equity products. Tavant plans to extend this robust data ecosystem to all consumer loans and banking products, making it a comprehensive solution for financial institutions. With Data Beats, Tavant empowers financial institutions towards proactive rather than reactive operations by incorporating generative AI to prompt users on the best course of action. This revolutionary approach allows the platform to offer precise recommendations for loan officers, consumers, processors, and underwriters, enhancing the overall efficiency of the lending process. Abhinav Asthana, Fintech Product Business and Growth Leader at Tavant said, Tavant's mission is to stay at the forefront of innovation and to be the engineering partner of choice in the financial services industry. Data Beats exemplifies our commitment to providing our customers with an advanced platform that accelerates their vision to transform into a data-first organization. We are proud to launch this platform, which brings insights, intelligence, and efficiency to the heart of the lending process. Data Beats has already started demonstrating its value within Tavant's existing customer base by enhancing and automating the home buying experience. By consolidating data from various stages of the customer journey, from acquisition to servicing and beyond, Data Beats provides invaluable insights that can be used to predict future behavior, optimize operations, and improve overall business performance. The system's foundation, the data lake, can ingest a wide range of data inputs, limited only by the specific business problem it aims to solve. This flexibility positions Data Beats to become a game-changing tool for a wide range of industries beyond mortgage and lending.

Read More

Industrial IoT

Casa Systems Unveils New AurusXT 5G Industrial IoT Router Series Featuring the World’s First Dynamic Slicing Support

Casa Systems | January 10, 2024

Casa Systems (Nasdaq: CASA), provider of innovative access network solutions serving customers worldwide, today announced the launch of the first solution in its AurusXT 5G Industrial IoT (IIoT) Series, the NTC-500 5G IIoT router, which leverages the speed and coverage of a 5G network to provide high-speed Ethernet-to-cellular connectivity. Casa’s NTC-500 is the first 5G IIoT router to support dynamic network slicing capabilities, allowing operators to provide new and tailored services to their enterprise customers. Casa’s AurusXT Series will offer a range of 5G IIoT devices designed to deliver reliable connectivity to a broad range of both fixed and mobile use cases. The NTC-500 is the first of the AurusXT Series to disrupt the IIoT market with a cost-effective 5G IIoT Router that utilizes the speed and coverage of a 5G Sub-6 GHz network to deliver a fast and reliable connection to machines, equipment, and vehicles. Casa’s industry-first and proprietary 5G Dynamic Slicing Technology sets the NTC-500 apart from every other IIoT router on the market. Other 5G IIoT routers are limited to static slicing, forcing end users to endure labor- and time-intensive manual, on-site reconfigurations whenever they want to make a slicing change. Casa’s Dynamic Slicing Technology empowers mobile operators to unlock new revenue streams by allowing their customers to flexibly establish and rescind network priority on demand. “The proliferation of 5G networks coupled with the sunset of global 3G networks has created a groundswell of demand for 5G IIoT devices,” said Steve Collins, SVP of Access Devices, Casa Systems. “Our AurusXT Series is designed to deliver cost-effective 5G IIoT solutions that will address most use cases. With our dynamic network slicing capabilities, mobile operators will be able to unlock new revenue streams by offering tailored service plans to meet their enterprise customers’ individual requirements.” IIoT routers can be found in installations around the world – wherever Ethernet-to-cellular connectivity is in demand – from remote security cameras in industrial sites or on roadways, to digital signs in shopping malls or other public venues, to standalone ticketing and other vending machines, to anywhere an IIoT device in any industry needs wireless connectivity to transmit data. Enterprises facing the inescapable sunsetting of 3G technology now have a cost-effective and future-proof option for upgrading the hundreds, thousands, or even tens of thousands of IIoT routers within their domain. By opting to deploy Casa’s NTC-500, operators can bypass the adoption of 4G devices and minimize costly truck rolls to replace both 3G and 4G IIoT routers. The NTC-500 supports the latest 3GPP Release 16 features, including 5G Non-standalone (NSA) and 5G Standalone (SA) with failover to 4G LTE. This ensures it will not become obsolete when 4G technology phases out, minimizing the operational impact of updating hardware. The NTC-500 is compatible with both 4G and 5G, enabling customers to enjoy the benefits of 5G with the added assurance that existing 4G devices will deliver the best possible performance. Casa Systems is currently welcoming new resellers globally. Resellers or system integrators interested in becoming a Casa Systems IIoT device reseller are encouraged to contact Casa at https://www.casa-systems.com/. About Casa Systems Casa Systems, Inc. (Nasdaq: CASA) is a next-gen technology leader that supports mobile, cable, and wireline communications services providers with market leading solutions. Casa’s virtualized and cloud-native software solutions modernize operators’ network architectures, expand the range of services they can offer their consumer and commercial customers, accelerate time to revenue, and reduce the TCO of their network infrastructure and operations. Casa’s suite of open, cloud-native network solutions unlocks new ways for service providers to quickly build flexible networks and service offerings that maximize revenue-generating capabilities. Commercially deployed in more than 70 countries, Casa Systems serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com/.

Read More

Industrial IoT

Comcast and Broadcom to Develop the World’s First AI-Powered Access Network With Pioneering New Chipset

Business Wire | October 23, 2023

Comcast and Broadcom today announced joint efforts to develop the world’s first AI-powered access network with a new chipset that embeds artificial intelligence (AI) and machine learning (ML) within the nodes, amps and modems that comprise the last few miles of Comcast’s network. With these new capabilities broadly deployed throughout the network, Comcast will be able to transform its operations by automating more network functions and deliver an improved customer experience through better and more actionable intelligence. Additionally, the new chipset will be the first in the world to incorporate DOCSIS 4.0 Full Duplex (FDX), Extended Spectrum (ESD) and the ability to run both simultaneously, enabling Internet service providers across the globe to deliver DOCSIS 4.0 services using a toolkit with technology options to meet their business needs. DOCSIS 4.0 is the next-generation network technology that will introduce symmetrical multi-gigabit Internet speeds, lower latency, and even better security and reliability to hundreds of millions of people and businesses over their existing connections without the need for major construction of new network infrastructure. On October 12, Comcast announced that it will begin to introduce the first customers in the world to Internet services powered by DOCSIS 4.0 using FDX. While the company will continue to leverage FDX, the collaboration with Broadcom will provide Comcast and other operators with additional options in the pursuit of delivering the best possible connectivity experience. The Xfinity 10G Network leverages the latest advancements in edge compute, digital optics and real-time, actionable telemetry to meet and exceed our customers’ constantly evolving connectivity needs, said Elad Nafshi, Chief Network Officer, Comcast Cable. With this new Unified DOCSIS4 chipset from Broadcom, we can broadly deploy transformational AI network capabilities alongside symmetrical multi-gig speeds. FDX is the best technology for Comcast, but this groundbreaking unified chipset will provide the entire industry with options when upgrading their nodes, amps, and cable modems for DOCSIS 4.0. The new end-to-end chipsets will be the industry’s first to incorporate AI and ML capabilities that will transform the operations and customer experience functions by: Making smarter network performance decisions using network diagnostics insights produced by both local and cloud AI. Enhanced monitoring and issue detection using bandwidth-efficient telemetry data. Transforming network maintenance of the network using real time issue localization plus predictive and self-healing network intelligence. Protecting network facilities and customers with improved cybersecurity intrusion detection. Assisting customers more effectively through local and cloud-based AI. Monitoring home IoT devices for connectivity disruptions. All these capabilities, and more, are achieved while reducing network latency and insulating customer data to ensure the utmost privacy standards. “By enabling a toolkit that includes FDX, ESD or both simultaneously, this new Unified DOCSIS4 chipset incorporates the advantages of both technologies and will enable economies of scale as well as a common retail modem for the industry,” said Rich Nelson, Senior Vice President and General Manager, Broadband Video Group, Broadcom. “The edge network and in-home capabilities of this chipset will improve network intelligence and reliability to create an improved broadband experience with enhanced privacy protection and cyber security for the consumer.” Comcast and Broadcom are designing and building the new chipset based upon CableLabs’ DOCSIS 4.0 specifications. The companies have a history of working together to introduce innovations that have pushed the industry to the next generation of connectivity. In 2021, Comcast conducted the world’s first full duplex multi-gigabit symmetrical test on Broadcom-built silicon. In January 2022 the companies tested the first Full Duplex DOCSIS 4.0 system-on-chip (SoC) cable modem that delivered symmetrical speeds faster than 4 Gbps. Later that year, Comcast successfully tested the final technical component of necessary to deliver multi-gig symmetrical speed powered by DOCSIS 4.0 throughout its network with 10G smart amps built on a Broadcom-developed reference design. The companies expect to begin trials early in 2024 and to begin deploying the new chipset in live networks before the end of the same year.

Read More

Enterprise Iot

Tavant Unveils Data Beats™: A Data-Driven Ecosystem Built for Fintechs and Financial Institutions to Harness Data Insights

Business Wire | October 20, 2023

Tavant, Silicon Valley’s leading digital lending solutions provider, today announced at the MBA's Annual Convention & Expo in Philadelphia, the launch of Data Beats™, a groundbreaking data platform that promises to redefine the financial services landscape. Built to inform, provide insights, act, recommend, and predict, Data Beats ushers in a new era of data-driven intelligence for the industry. This versatile platform empowers businesses to harness the power of their data and maximize its value, effectively taking the stress out of data management. Key benefits of Data Beats include: Provides actionable data insights that work for your business; Analyzes data from various aspects of your operations; Adapts and learns from your data to provide real-time recommendations; and Looks into the future, learns and predicts trends. Data Beats is a platform offering within Tavant's banking and financial services suite of technology products. Data Beats is set to serve as the analytics and IoT engine for the financial services industry, initially focusing on mortgage and home equity products. Tavant plans to extend this robust data ecosystem to all consumer loans and banking products, making it a comprehensive solution for financial institutions. With Data Beats, Tavant empowers financial institutions towards proactive rather than reactive operations by incorporating generative AI to prompt users on the best course of action. This revolutionary approach allows the platform to offer precise recommendations for loan officers, consumers, processors, and underwriters, enhancing the overall efficiency of the lending process. Abhinav Asthana, Fintech Product Business and Growth Leader at Tavant said, Tavant's mission is to stay at the forefront of innovation and to be the engineering partner of choice in the financial services industry. Data Beats exemplifies our commitment to providing our customers with an advanced platform that accelerates their vision to transform into a data-first organization. We are proud to launch this platform, which brings insights, intelligence, and efficiency to the heart of the lending process. Data Beats has already started demonstrating its value within Tavant's existing customer base by enhancing and automating the home buying experience. By consolidating data from various stages of the customer journey, from acquisition to servicing and beyond, Data Beats provides invaluable insights that can be used to predict future behavior, optimize operations, and improve overall business performance. The system's foundation, the data lake, can ingest a wide range of data inputs, limited only by the specific business problem it aims to solve. This flexibility positions Data Beats to become a game-changing tool for a wide range of industries beyond mortgage and lending.

Read More

Events