Extending the Reach of IoT- 4G LTE Secure Connectivity for Power and Space Constrained Deployments

The spotlight at the European Utility Week conference is focused on the newest member of the Cisco 800 Series Industrial Router family. The Cisco 807 Industrial Integrated Services Router fits in space constrained areas and consumes minimal power while delivering high performance secure connectivity over LTE networks.

Spotlight

The AirBoard

We combine Design Thinking and eXtreme Manufacturing techniques to reduce risks of an innovation at early stages. Our mission is to deliver tools and workshops to accelerate prototyping and scaling of Minimum Viable Products in emerging markets for qualified user insight.

OTHER ARTICLES
IoT Security

Securing Real-world IoT Applications through Penetration Testing

Article | June 27, 2023

Enhancing IoT security: Unveiling the significance of penetration testing in securing real-world IoT applications, identifying vulnerabilities, and mitigating risks for the protection of IoT data. Contents 1. Introduction to IoT Application Security and Penetration Testing 1.1 Vulnerabilities of IoT application security 2. Fundamentals of IoT Penetration Testing 3. Considerations for IoT Penetration Testing 4. Methodologies and Approaches for IoT Penetration Testing 5. Takeaway 1. Introduction to IoT Application Security and Penetration Testing Securing real-world IoT applications is paramount as the Internet of Things (IoT) permeates various aspects of any individuals lives. Penetration testing serves as a vital tool in identifying vulnerabilities and assessing the resilience of IoT systems against cyber threats. In this article, delve into the significance of penetration testing in securing IoT applications, exploring its role in identifying weaknesses, mitigating risks, and ensuring the integrity and confidentiality of IoT data. 1.1 Vulnerabilities of IoT application security Expanded Attack Surface: The proliferation of IoT devices has dramatically expanded the attack surface, increasing the potential for security breach enterprise networks. With billions of interconnected devices, each presenting a potential vulnerability, the risk of unauthorized access, data breaches, and other security incidents is significantly heightened. Risks: IoT devices often possess limited computational resources, making them susceptible to software and firmware vulnerabilities. Their resource-constrained nature can limit the implementation of robust security measures, leaving them exposed to potential attacks. Furthermore, a significant concern is the prevalence of default or weak credentials on these devices. Diverse Threat Landscape: The threat landscape surrounding IoT devices is extensive and ever-evolving. It encompasses various attack vectors, including malware, botnets, DDoS attacks, physical tampering, and data privacy breaches. One notable example is the Mirai botnet, which compromised a vast number of IoT devices to launch large-scale DDoS attacks, leading to significant disruptions in internet services. In addition, IoT devices can serve as entry points for infiltrating larger networks and systems, allowing attackers to pivot and gain control over critical infrastructure. Botnets: IoT devices can be infected with malware and become part of a botnet, which can be used for various malicious activities. Botnets are often utilized to launch distributed denial-of-service (DDoS) attacks, where a network of compromised devices overwhelms a target system with traffic, causing it to become inaccessible. Ransomware: IoT devices are also vulnerable to ransomware attacks. Ransomware is malicious software that encrypts the data on a device and demands a ransom payment in exchange for the decryption key. Data Breaches: IoT devices can be targeted to steal sensitive data, including personal identifiable information (PII) or financial data. Due to inadequate security measures, such as weak authentication or unencrypted data transmissions, attackers can exploit IoT devices as entry points to gain unauthorized access to networks and systems. 2. Fundamentals of IoT Penetration Testing IoT penetration testing, also known as ethical hacking or security assessment, is a critical process for testing and identifying vulnerabilities and assessing the security posture of IoT devices, networks, and applications. It involves simulating real-world attacks to uncover weaknesses and provide insights for remediation. IoT penetration testing involves identifying vulnerabilities, conducting targeted attacks, and evaluating the effectiveness of security controls in IoT systems. IoT pen-testing aims to proactively identify and address potential weaknesses that malicious actors could exploit. The methodology of IoT pen-testing typically follows a structured approach. It begins with attack surface mapping, which involves identifying all potential entry and exit points that an attacker could leverage within the IoT solution. This step is crucial for understanding the system's architecture and potential vulnerabilities. Pentesters spend considerable time gathering information, studying device documentation, analyzing communication protocols, and assessing the device's hardware and software components. Once the attack surface is mapped, the following steps involve vulnerability identification and exploitation. This includes conducting security tests, exploiting vulnerabilities, and evaluating the system's resilience to attacks. The penetration testers simulate real-world attack scenarios to assess the device's ability to withstand threats. After exploitation, post-exploitation activities are performed to determine the extent of the compromise and evaluate the potential impact on the device and the overall IoT ecosystem. Finally, a detailed technical report summarizes the findings, vulnerabilities, and recommendations for improving the device's security. 3. Considerations for IoT Penetration Testing Fuzzing and Protocol Reverse Engineering: Employ advanced techniques like fuzzing to identify vulnerabilities in communication protocols used by IoT devices. Fuzzing involves sending malformed or unexpected data to inputs and analyzing the system's response to uncover potential weaknesses. Radio Frequency (RF) Analysis: Perform RF analysis to identify weaknesses in wireless communication between IoT devices. This includes analyzing RF signals, monitoring wireless communication protocols, and identifying potential vulnerabilities such as replay attacks or unauthorized signal interception. Red Team Exercises: Conduct red team exercises to simulate real-world attack scenarios and evaluate the organization's detection and response capabilities. Red team exercises go beyond traditional penetration testing by emulating the actions and techniques of skilled attackers. This helps uncover any weaknesses in incident response, detection, and mitigation processes related to IoT security incidents. Embedded System Analysis: Gain expertise in analyzing and reverse engineering embedded systems commonly found in IoT devices. This includes understanding microcontrollers, debugging interfaces, firmware extraction techniques, and analyzing the device's hardware architecture. Embedded system analysis helps identify low-level vulnerabilities and potential attack vectors. Zero-Day Vulnerability Research: Engage in zero-day vulnerability research to identify previously unknown vulnerabilities in IoT devices and associated software. This requires advanced skills in vulnerability discovery, exploit development, and the ability to responsibly disclose vulnerabilities to vendors. 4. Methodologies and Approaches for IoT Penetration Testing Mobile, Web and Cloud Application Testing Mobile, web, and cloud application testing is integral to IoT penetration testing, focusing on assessing the security of applications that interact with IoT devices. This methodology involves various steps to evaluate the security of these applications across different platforms. For mobile applications, the methodology includes reviewing the binary code, conducting reverse engineering to understand the inner workings, and analyzing the file system structure. Sensitive information such as keys and certificates embedded within the mobile app are scrutinized for secure storage and handling. The assessment extends to examining the application's resistance to unauthorized modifications. In web applications, the testing covers common vulnerabilities like cross-site scripting (XSS), insecure direct object references (IDOR), and injection attacks. Application reversing techniques are employed to gain insights into the application's logic and potential vulnerabilities. Additionally, hardcoded API keys are identified and assessed for their security implications. Firmware Penetration Testing Firmware penetration testing is a crucial aspect of IoT security assessments, aiming to identify vulnerabilities within the firmware running on IoT devices. The methodology encompasses multiple steps to uncover weaknesses. The process begins with binary analysis, dissecting the firmware to understand its structure, functionality, and potential vulnerabilities. Reverse engineering techniques are applied to gain deeper insights into the firmware's inner workings, exposing potential weaknesses like hardcoded credentials or hidden functionality. The analysis extends to examining different file systems used in the firmware and evaluating their configurations and permissions. Sensitive keys, certificates, and cryptographic material embedded within the firmware are scrutinized for secure generation, storage, and utilization. Additionally, the resistance of the firmware to unauthorized modification is assessed, including integrity checks, secure boot mechanisms, and firmware update processes. IoT Device Hardware Pentest IoT device hardware penetration testing involves a systematic methodology to assess the security of IoT devices at the hardware level. This comprehensive approach aims to identify vulnerabilities and weaknesses that attackers could exploit. The methodology includes analyzing internal communication protocols like UART, I2C, and SPI to understand potential attack vectors. Open ports are examined to evaluate the security controls and risks associated with communication interfaces. The JTAG debugging interface is explored to gain low-level access and assess the device's resistance to unauthorized access. Extracting firmware from EEPROM or FLASH memory allows testers to analyze the code, configurations, and security controls. Physical tampering attempts are made to evaluate the effectiveness of the device's physical security measures. 5. Takeaway Penetration testing is crucial in securing real-world IoT applications, enabling organizations to identify vulnerabilities and mitigate risks effectively. By conducting comprehensive and regular penetration tests, organizations can proactively identify and address security weaknesses, ensuring the integrity and confidentiality of IoT data. With the ever-growing threat landscape and increasing reliance on IoT technologies, penetration testing has become indispensable to safeguard IoT applications and protect against potential cyber-attacks. Several key factors will shape the future of IoT penetration testing. First, the increasing complexity of IoT systems will require testing methodologies to adapt and assess intricate architectures, diverse protocols, and a wide range of devices. Second, there will be a greater emphasis on security by design, with penetration testing focusing on verifying secure coding practices, robust access controls, and secure communication protocols. Third, supply chain security will become crucial, necessitating penetration testing to assess the security measures implemented by vendors, third-party components, and firmware updates. Fourth, integrating IoT penetration testing with DevSecOps practices will ensure continuous monitoring and improvement of IoT system security. Lastly, as attackers become more sophisticated, future IoT penetration testing methodologies will need to keep pace with evolving IoT-specific attack techniques. By embracing these advancements, IoT penetration testing will play a vital role in ensuring the security and privacy of IoT deployments.

Read More
Industrial IoT, IoT Security

IoT Adoption: Before and After COVID-19

Article | July 12, 2023

The survey data I’m referring to comes from a study conducted by the Eclipse Foundation about the adoption of commercial Internet of Things (IoT) technology. The aim of the study was to get a better understanding of the IoT industry landscape by identifying the requirements, priorities, and challenges faced by organizations deploying and using commercial IoT technologies. More than 350 respondents from multiple industries responded, with about a quarter of respondents coming from industrial production businesses. While this survey was not solely focused on the manufacturing and processing industries, its results reflect the general business community’s IoT adoption at the end of 2019. As such, it is a pre-COVID-19 snapshot of IoT adoption.

Read More
Enterprise Iot

What Is IoT Forensics? Challenges Ahead and Best Tools to Use

Article | July 20, 2023

Internet of Things, generally known as IoT, is a network of objects or things. Embedded sensors help connect and exchange data with other objects via the internet. IoT is often related to the concept of smart homes, including devices like home security systems, cameras, lighting, refrigerators, etc. With all this data being transmitted over the internet, it is easy for the data to be modified, deleted, or stolen, which can lead to an invasion, theft, etc. IoT forensics plays a vital role in maintaining the integrity and security of the data being transmitted. Join us as we explore this fascinating web of devices and how you can get started in this vibrant field of forensics.

Read More
Enterprise Iot

How to Secure Your Network with Zero Trust Security for IoT?

Article | July 19, 2022

The concept of "never trust, always verify" is the foundation of the relatively new security architecture known as "zero trust." Zero trust requires that all users and devices be verified every time they connect, even from inside the "moat," in contrast to the conventional castle-and-moat security architecture, which automatically trusts users and devices located within a network's perimeter. Companies are being forced to reconsider how they safeguard their networks by the internet of things (IoT). Unmanaged smart gadgets connected to the internet expand the number of potential access points for hackers to compromise your security when they are added to a network. Zero Trust Security Expansion for IoT After establishing it for users and their devices, organizations must extend zero-trust security to cover unmanaged, non-user devices too. To do this, they require zero trust identity management technologies that automatically register devices, issue credentials, and offer password-less authentication. Device Visibility A device may be infected with malware or have a security breach if performance problems or bugs start to appear frequently. In addition, a malfunctioning device may be more vulnerable to attack. Therefore, organizations require device health monitoring that can automatically identify problems and flag them for remedy in order to establish and maintain zero trust security for IoT. Some cutting-edge solutions can also automatically prevent an impacted device from making further connection attempts or carrying out corrective actions without requiring human participation. The Principle of Least Privilege (PoLP) The principle of least privilege (PoLP), which argues that any user or device should only obtain the bare minimum access privileges necessary to perform their job functions, is widely used in conjunction with zero trust security. Therefore, organizations must establish the minimal level of network access required for each device to carry out its functions before limiting its potential privileges in order to deploy PoLP for IoT. Implementing identity and access management (IAM) tools and guidelines that support zero trust and PoLP for devices is one approach to accomplishing this. Security Monitoring There are other zero-trust security monitoring programs created especially for IoT, such as Palo Alto Networks' IoT Security, which was previously discussed. Businesses can also utilize tools to monitor devices and network traffic, such as next-generation firewalls and intrusion detection and prevention systems (IDS/IPS). The zero trust security solution for IoT must include monitoring in addition to as much automation as possible so that threats can be identified, contained, and remedied even when no one is there to press a button or disconnect a device manually. One of the leading causes of zero trust security projects failing over time is that people stop adhering to them once they get complicated. This is especially true for IoT security that operates on zero trust. In addition, it can be logistically challenging to keep remote, unmanaged devices at zero trust.

Read More

Spotlight

The AirBoard

We combine Design Thinking and eXtreme Manufacturing techniques to reduce risks of an innovation at early stages. Our mission is to deliver tools and workshops to accelerate prototyping and scaling of Minimum Viable Products in emerging markets for qualified user insight.

Related News

IoT Security

AppViewX Digital Trust Platform Named IoT Security Product of the Year

AppViewX | January 12, 2024

AppViewX, the leader in automated machine identity management (MIM) and application infrastructure security, today announced the AppViewX Digital Trust Platform has been named IoT Security Product of the Year in the 8th annual IoT Breakthrough awards program, which showcases technologies and companies that drive innovation and exemplify the best in IoT technology solutions across the globe. IoT Breakthrough is a leading market intelligence organization that recognizes the top companies, technologies and products in the global IoT market. The mission of the IoT Breakthrough Awards program is to recognize the innovators, leaders and visionaries from around the globe in a range of IoT categories, including Industrial and Enterprise IoT, Smart City technology, Connected Home and Home Automation, Connected Car, and many more. This year's program attracted nominations from companies all over the world. “Unmanaged machine identities for IoT devices can create critical security vulnerabilities, but for most organizations discovering, maintaining visibility into and controlling them has become manually unfeasible,” said Gregory Webb, CEO of AppViewX. “The AppViewX Digital Trust Platform automates IoT identity management at scale across the largest, most complex and distributed customer environments, allowing customers to achieve significantly stronger security posture and meet compliance requirements.” All IoT Breakthrough Award nominations were evaluated by an independent panel of experts within the IoT industry, with the winning products and companies selected based on a variety of criteria, including most innovative and technologically advanced products and services. About AppViewX Digital Trust Platform Out of the box, AppViewX provides instant value to customers by discovering all certificates across complex enterprise environments, building and maintaining inventories, provisioning both private and public trust certificates from any CA, alerting to expiring certificates and fully automating renewals and revocation to eliminate outages and security weaknesses across machines, applications, services, and security infrastructure. About AppViewX AppViewX is trusted by the world’s leading organizations to reduce risk, ensure compliance, and increase visibility through automated machine identity management and application infrastructure security and orchestration. The AppViewX platform provides complete certificate lifecycle management and PKI-as-a-Service using streamlined workflows to prevent outages, reduce security incidents and enable crypto-agility. Fortune 1000 companies, including six of the top ten global commercial banks, five of the top ten global media companies, and five of the top ten managed healthcare providers rely on AppViewX to automate NetOps, SecOps, and DevOps. AppViewX is headquartered in New York with offices in the U.K., Australia and three development centers of excellence in India. For more information, visit https://www.appviewx.com and follow us on LinkedIn and Twitter.

Read More

Software and Tools

ATEL® Unveils the WB550 Apex by ATEL™: The Ultimate 5G Indoor Router with Unmatched Connectivity, Security, and Value

PR Newswire | October 25, 2023

ATEL®, a leader in telecommunications technology, is excited to announce the launch of its latest innovation, the WB550 Apex by ATEL™ 5G Indoor Router. Designed to meet the most demanding Internet connectivity needs, the WB550 Apex by ATEL™ offers unparalleled data speeds, robust security features, and the power to connect up to 32 users. As more of our lives shift to the cloud, having a real-time connection to the Internet is no longer an option, explains Terence "TC" Caston VP of Product Marketing: "Our businesses and homes rely on low-latency applications that perform best with networks that have the power to support them. ATEL® has ensured the network's edge devices have the power to deliver!" The WB-550 FWA (Fixed Wireless Access) device gives your business or home the reliability and power to connect to the things that move you. Key highlights of the WB-550 include: Support for NSA or SA 5G networks C-Band 5G and LTE Cat-19 fallback for lightning-fast speeds in areas without 5G Connections for up to 32 devices on its powerful Wi-Fi 6 network For managing your deployment of devices, ATEL® has also included its premiere device remote management solution called ATRACS™. Our remote management portal has been designed to bring the best-of-breed features to every ATEL® device we launch with two years of free service! About ATEL Asiatelco Technologies Co. (ATEL®) was established in 2003. Since its inception, ATEL® has been growing steadily with its sales covering more than 50 countries. ATEL's business model is JDM/ODM for serving wireless operators and branded customers. With 20 years of accumulated experience, ATEL® has built a strong, effective, and efficient team in R&D and manufacturing. Customers can always rely on the ATEL® team's performance. Quality, flexibility, on-time delivery and lower cost, are just some of the key factors of success at ATEL® and the key to customer satisfaction. ATEL-USA was established in 2017, with its headquarters in Newport Beach, California. We have invested in the industry's top talent for hardware, software, marketing, quality, and operations. This has allowed us to continue the transition from a 3rd Party ODM to a full-service OEM supplier of quality wireless products. Our products include FWA (Fixed Wireless Access), POTs replacement devices, mobile broadband routers, hot spots, home phone connect, OBD, CPE, IoT, safety devices, and smart devices for the US market. A strong, effective, and efficient R&D team, along with the manufacturing team, has positioned ATEL-USA to enter into the OEM space.

Read More

Enterprise Iot

Nokia, BT Group and MediaTek trial 5G RedCap technology to accelerate the Internet of Things

MarketScreener | October 18, 2023

Nokia, together with BT Group and MediaTek today announced that they have successfully completed trials of 5G Reduced Capability (RedCap) technology with RedCap devices. The trial, which took place at BT Group's Adastral Park site, utilized Nokia's AirScale RAN portfolio, EE's 5G Standalone (SA) network, and MediaTek's RedCap testing platform. RedCap is a technology introduced in 3GPP Release 17 that brings 5G to devices that do not require its full capabilities. It has the potential to expand the IoT ecosystem and accelerate its deployment within the industry. BT Group is evaluating RedCap to support new 5G use cases which could benefit both EE's business and consumer customer bases. 5G devices such as smartphones often have complex hardware and power-hungry features which leads to higher cost, size, and power consumption. RedCap technology focuses on simplifying 5G devices, particularly small IoT devices such as wearables or health trackers for consumers as well as ruggedized routers, and environmental or other condition-based monitoring sensors. These devices have less demand for battery life and lower bandwidth requirements. RedCap ensures they maintain performance and optimizes their power efficiency. Nokia has played a pivotal role in advancing RedCap IoT functionality together with the telecommunications industry. Greg McCall, Chief Networks Officer at BT Group said: 'This trial with Nokia demonstrates the potential of RedCap technology in unlocking a new wave of innovation within the 5G services ecosystem. This is especially the case as we move towards the arrival of 5G SA, bringing with it enhanced reliability, responsiveness, security, and speed which - through 5G RedCap - promises to benefit a host of new IoT devices and use cases.' Robert Moffat, Deputy Director Europe Mobile Business Development at MediaTek, said: 'Our collaboration with Nokia and BT Group for this trial of 5G RedCap technology aligns with MediaTek's commitment to driving innovation and expanding the potential of 5G SA to include a wider ecosystem of devices and use cases.' Phil Siveter, CEO, UK and Ireland at Nokia, commented: 'The introduction of RedCap will unlock new 5G opportunities for many industries, with potentially billions of new devices connected with 5G. Our field tests with BT Group show that Nokia 5G Standalone networks are ready to support RedCap devices.'

Read More

IoT Security

AppViewX Digital Trust Platform Named IoT Security Product of the Year

AppViewX | January 12, 2024

AppViewX, the leader in automated machine identity management (MIM) and application infrastructure security, today announced the AppViewX Digital Trust Platform has been named IoT Security Product of the Year in the 8th annual IoT Breakthrough awards program, which showcases technologies and companies that drive innovation and exemplify the best in IoT technology solutions across the globe. IoT Breakthrough is a leading market intelligence organization that recognizes the top companies, technologies and products in the global IoT market. The mission of the IoT Breakthrough Awards program is to recognize the innovators, leaders and visionaries from around the globe in a range of IoT categories, including Industrial and Enterprise IoT, Smart City technology, Connected Home and Home Automation, Connected Car, and many more. This year's program attracted nominations from companies all over the world. “Unmanaged machine identities for IoT devices can create critical security vulnerabilities, but for most organizations discovering, maintaining visibility into and controlling them has become manually unfeasible,” said Gregory Webb, CEO of AppViewX. “The AppViewX Digital Trust Platform automates IoT identity management at scale across the largest, most complex and distributed customer environments, allowing customers to achieve significantly stronger security posture and meet compliance requirements.” All IoT Breakthrough Award nominations were evaluated by an independent panel of experts within the IoT industry, with the winning products and companies selected based on a variety of criteria, including most innovative and technologically advanced products and services. About AppViewX Digital Trust Platform Out of the box, AppViewX provides instant value to customers by discovering all certificates across complex enterprise environments, building and maintaining inventories, provisioning both private and public trust certificates from any CA, alerting to expiring certificates and fully automating renewals and revocation to eliminate outages and security weaknesses across machines, applications, services, and security infrastructure. About AppViewX AppViewX is trusted by the world’s leading organizations to reduce risk, ensure compliance, and increase visibility through automated machine identity management and application infrastructure security and orchestration. The AppViewX platform provides complete certificate lifecycle management and PKI-as-a-Service using streamlined workflows to prevent outages, reduce security incidents and enable crypto-agility. Fortune 1000 companies, including six of the top ten global commercial banks, five of the top ten global media companies, and five of the top ten managed healthcare providers rely on AppViewX to automate NetOps, SecOps, and DevOps. AppViewX is headquartered in New York with offices in the U.K., Australia and three development centers of excellence in India. For more information, visit https://www.appviewx.com and follow us on LinkedIn and Twitter.

Read More

Software and Tools

ATEL® Unveils the WB550 Apex by ATEL™: The Ultimate 5G Indoor Router with Unmatched Connectivity, Security, and Value

PR Newswire | October 25, 2023

ATEL®, a leader in telecommunications technology, is excited to announce the launch of its latest innovation, the WB550 Apex by ATEL™ 5G Indoor Router. Designed to meet the most demanding Internet connectivity needs, the WB550 Apex by ATEL™ offers unparalleled data speeds, robust security features, and the power to connect up to 32 users. As more of our lives shift to the cloud, having a real-time connection to the Internet is no longer an option, explains Terence "TC" Caston VP of Product Marketing: "Our businesses and homes rely on low-latency applications that perform best with networks that have the power to support them. ATEL® has ensured the network's edge devices have the power to deliver!" The WB-550 FWA (Fixed Wireless Access) device gives your business or home the reliability and power to connect to the things that move you. Key highlights of the WB-550 include: Support for NSA or SA 5G networks C-Band 5G and LTE Cat-19 fallback for lightning-fast speeds in areas without 5G Connections for up to 32 devices on its powerful Wi-Fi 6 network For managing your deployment of devices, ATEL® has also included its premiere device remote management solution called ATRACS™. Our remote management portal has been designed to bring the best-of-breed features to every ATEL® device we launch with two years of free service! About ATEL Asiatelco Technologies Co. (ATEL®) was established in 2003. Since its inception, ATEL® has been growing steadily with its sales covering more than 50 countries. ATEL's business model is JDM/ODM for serving wireless operators and branded customers. With 20 years of accumulated experience, ATEL® has built a strong, effective, and efficient team in R&D and manufacturing. Customers can always rely on the ATEL® team's performance. Quality, flexibility, on-time delivery and lower cost, are just some of the key factors of success at ATEL® and the key to customer satisfaction. ATEL-USA was established in 2017, with its headquarters in Newport Beach, California. We have invested in the industry's top talent for hardware, software, marketing, quality, and operations. This has allowed us to continue the transition from a 3rd Party ODM to a full-service OEM supplier of quality wireless products. Our products include FWA (Fixed Wireless Access), POTs replacement devices, mobile broadband routers, hot spots, home phone connect, OBD, CPE, IoT, safety devices, and smart devices for the US market. A strong, effective, and efficient R&D team, along with the manufacturing team, has positioned ATEL-USA to enter into the OEM space.

Read More

Enterprise Iot

Nokia, BT Group and MediaTek trial 5G RedCap technology to accelerate the Internet of Things

MarketScreener | October 18, 2023

Nokia, together with BT Group and MediaTek today announced that they have successfully completed trials of 5G Reduced Capability (RedCap) technology with RedCap devices. The trial, which took place at BT Group's Adastral Park site, utilized Nokia's AirScale RAN portfolio, EE's 5G Standalone (SA) network, and MediaTek's RedCap testing platform. RedCap is a technology introduced in 3GPP Release 17 that brings 5G to devices that do not require its full capabilities. It has the potential to expand the IoT ecosystem and accelerate its deployment within the industry. BT Group is evaluating RedCap to support new 5G use cases which could benefit both EE's business and consumer customer bases. 5G devices such as smartphones often have complex hardware and power-hungry features which leads to higher cost, size, and power consumption. RedCap technology focuses on simplifying 5G devices, particularly small IoT devices such as wearables or health trackers for consumers as well as ruggedized routers, and environmental or other condition-based monitoring sensors. These devices have less demand for battery life and lower bandwidth requirements. RedCap ensures they maintain performance and optimizes their power efficiency. Nokia has played a pivotal role in advancing RedCap IoT functionality together with the telecommunications industry. Greg McCall, Chief Networks Officer at BT Group said: 'This trial with Nokia demonstrates the potential of RedCap technology in unlocking a new wave of innovation within the 5G services ecosystem. This is especially the case as we move towards the arrival of 5G SA, bringing with it enhanced reliability, responsiveness, security, and speed which - through 5G RedCap - promises to benefit a host of new IoT devices and use cases.' Robert Moffat, Deputy Director Europe Mobile Business Development at MediaTek, said: 'Our collaboration with Nokia and BT Group for this trial of 5G RedCap technology aligns with MediaTek's commitment to driving innovation and expanding the potential of 5G SA to include a wider ecosystem of devices and use cases.' Phil Siveter, CEO, UK and Ireland at Nokia, commented: 'The introduction of RedCap will unlock new 5G opportunities for many industries, with potentially billions of new devices connected with 5G. Our field tests with BT Group show that Nokia 5G Standalone networks are ready to support RedCap devices.'

Read More

Events